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Abstract

Our previous work in computer-aided mammography has used scale-
orientation pixel signatures that provide a rich description of local
structure. We describe work using the transportation (‘earth mover’)
algorithm to define a measure of similarity between two signatures
that recognises similar structures whilst remaining robust to back-
ground variability and the presence of other structures. Specifically,
we investigate an un-normalised, normalised and novel best-partial-
matching (BPM) approach to measuring this transportation distance
and compare it with Euclidean distance. Receiver operating charac-
teristic (ROC) methodology is used to compare performance and an
example of clinical application is given. The BPM approach outper-
forms the other methods.

1 Introduction

It has been shown that prompting in mammography can improve a radiologist’s
performance, even if the prompting system makes errors [4]. Prompting involves
using computer-based image analysis to locate potential abnormalities and gen-
erate markers to attract the radiologist’s attention to them. One approach is
to compute some form of local feature signature for each pixel and then apply
a statistical classifier [5]. Recently, scale-orientation signatures have been used
for the detection of blob-like structures in mammographic images [11] and can
also be used as a general technique for structure detection. However, when the
signatures are treated as vectors for statistical classification, the Euclidean space
they define has unsatisfactory metric properties - a small change in underlying
structure may produce a large change in the vector. This produces an unsatis-
factory basis for statistical analysis. We describe work using the transportation
(‘earth mover’) algorithm to measure the extent to which values in two signatures
need to be redistributed to make them identical. This measurement is called the
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transportation distance and is a ‘natural’ measure of similarity between the two
signatures. Specifically, we investigate an un-normalised, normalised and novel
best-partial-matching approach to measuring the transportation distance between
two signatures and compare them with Euclidean distance. Our aim is to find a
measure that recognises similar structures in signatures whilst remaining robust
to background variability and the presence of other structures.

2 Background

2.1 Scale-orientation signatures

Morphological M or N filters belong to a class of filters, known as sieves, that
remove peaks or troughs smaller than a specified size [1]. By applying sieves of
increasing size at a number of orientations, a scale-orientation signature can be
constructed for each pixel in an image. The signature is a 2-D array in which
the columns are values for the same orientation, the rows are values for the same
scale and the values themselves are the grey-level change at the pixel, resulting
from the application of the filter at a particular scale and orientation. Sieves
have been shown to have desirable properties when compared to other methods
of constructing scale-orientation signatures [11, 2]. In particular, the results at
different positions on the same structure are similar (local stationarity) and the
interaction between adjacent structures is minimised. Figure 1 shows examples of
scale-orientation signatures for the centre pixel of some simple structures.
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Figure 1: Scale-orientation signatures for (a) a Gaussian blob and (b) a Gaussian
line.

2.2 Transportation problems

Transportation problems are a class of linear programming problems in which one
attempts to minimise the cost of delivering integral quantities of goods produced
at n warehouses to m markets whilst balancing supply and demand [3]. This gen-
erates a trans-shipment problem with no intermediate nodes, with each warehouse
and market connected, and a set of unit costs, c;;, of shipping from warehouse 4
to market j. There are efficient solutions to this class of optimisation problem [8].
We have previously used transportation methods to detect breast asymmetries [7].
More recently they have been applied to comparing histograms [9]. Signature ele-
ments can be thought of as warehouses, each containing goods proportional to the
pixel intensity of the element. Alternatively, the elements can be thought of as
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markets, each requiring goods proportional to the pixel intensity. By considering
one signature as supplying goods and another signature as demanding goods, we
create a transportation problem. A meaningful solution to the problem is facili-
tated by choosing a suitable set of costs, c;;, to capture the two-dimensional nature
of the signatures. Our work uses costs based on Euclidean distance, taking into
account the periodicity of the orientation axis of the signatures. Thus, localised
movement in both scale and orientation is favoured above larger scale movements.
In each of the techniques described in section 3, the similarity measure is defined as
the mean cost of moving a single unit of intensity; the total cost of transportation
divided by the number of units (goods) transported.

3 Developing a suitable measure of similarity

Signatures may be obtained from one or more structures embedded in a variable
mammographic background. A suitable measure of similarity should be able to
recognise whether similar structures exist in both signatures, regardless of the
presence of other structures or different backgrounds in either signature. The
techniques introduced in this section attempt to address this issue using a trans-
portation framework. Figure 2 shows two signatures, taken from (a) a binary
line and (b) a binary blob. Visualisations of the solutions to the transport prob-
lem are shown for the (a) un-normalised, (b) normalised and (c) partial matching
techniques discussed below.
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Figure 2: Transportation between signatures from (a) a binary line and (b) a
binary blob using (c) un-normalised signatures, (d) normalised signatures and (e)
partial matching at 50%. The arrows show the movement of ‘material’ from (a)
to (b).

3.1 Un-normalised signatures

This method of obtaining a similarity measure involves no pre-processing of the
signatures. That is, the ‘raw’ signatures define the transportation problem. If the
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sum of each signature is different, we have an unbalanced problem. This is more
commonly known as the ‘nonstandard’ transportation problem and is solved by
introducing an extra warehouse (or market) to provide (or absorb) the difference.
Movement to or from this extra location is free (zero cost). A visualisation of the
solution is shown in 2(c). As the signatures are unbalanced, when transporting
from signature (a) to signature (b), the extra goods required have been obtained
from a dummy warehouse, indicated by an arrow entering the plot.

3.2 Normalised signatures

This method pre-processes the signatures to equalise their totals. The simplest
way to do this is, for both signatures, to multiply each element in one signature
by the total of the elements in the other signature. Thus a balanced problem is
created and a solution exists without the need for an extra location to supply or
absorb excess material. Figure 2(d) shows the solution for matching the two binary
signatures. As the signatures are normalised, no external goods are required.

3.3 Partial matching

This new method is motivated by the observation that, in real applications, it is
likely that similar structures will be embedded in different backgrounds, resulting
in partial similarity between signatures. A specified fraction of one signature is
matched to the other. Figure 3 shows schematically how partial matching works.
The larger boxes are the signatures and the smaller boxes are a dummy ware-
house and market. The first signature has a total supply of S; goods and the
second signature requires Sy goods. We choose a specified fraction fS; of the
first signature to describe the second signature. This dictates what the values in
the dummy warehouse and market should be to create a balanced problem. The
inter-signature costs are defined as in section 2.2. The cost of moving between a
dummy and signature location is chosen to be the same as moving to an adjacent
4-connected square within a signature. Varying this value determines the ratio of
internal to external movement. Movement between the two dummy locations is
prohibited. Figure 2(e) shows the transportation solution at a specified matching
fraction of 50%. Six of the goods have been moved ‘internally’ and the rest of the
goods have been ‘exported’ or ‘imported’.
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Figure 3: Partial matching using the transportation problem.
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3.4 Best-partial-matching

If we examine the transportation cost as a function of the partial match fraction,
we find a minimum at the value that best describes one signature in terms of the
other. For example, when a structure is common to both signatures, the best-
partial-match (BPM) fraction corresponds to a solution that finds the common
structure but imports and/or exports the remaining material in the signature. We
currently use exhaustive search to find the BPM fraction at which the minimum
cost occurs.

4 Experimental evaluation

4.1 Synthetic example

A synthetic image data set was constructed from combinations of a Gaussian line,
Gaussian blob and fractal-generated background similar to those found in mam-
mograms. Using synthetic data allows the exact definition of ground truth and
so produces objective quantitative results. In addition, when comparing images
containing the Gaussian line, there is no need to search over orientation as all
occurrences of the line are identical. Thus, each signature comparison is faster
and more signatures can be examined. Figure 4 shows the synthetic images used.

~~
~
~
—~ %
e
17

(a)

Figure 4: The synthetic image test set consists of a (a) blob, (b) line, (c) blob and
line, (d) background, (e) blob and background, (f) line and background and (g)
blob, line and background.

Two experiments were performed with the synthetic data. Both experiments
involve comparing pairs of images from the test set. For each comparison, 200
pixels are randomly chosen from a structure of interest in one of the images.
Similarity distances are then measured between the 200 chosen pixel signatures and
their counterparts in the other image for the methods mentioned in sections 3.1, 3.2
and 3.4. By comparing similarity distances between image pairs that contain the
same structure and image pairs that don’t, ROC analysis may be employed to
analyse the results.

The first experiment examines the ability of the different techniques to detect
a structure in a signature that is contained in another signature. The Gaussian
blob, figure 4(a), is compared with each of the other images that contain the blob,
ie. 4(c), (e) and (g). It is then compared with each of the images that don’t
contain the blob, ie. 4(b), 4(d) and 4(f). This is repeated using the Gaussian line;
comparing it with images that contain the line and with images that don’t. The
aim is to obtain lower similarity distances for image pairs containing the same
structure. Figure 5(a) shows the results of this experiment.
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The second experiment, examines the ability of the different techniques to de-
tect a structure that is common to both signatures when both signatures contain
more data than just the structure in question. Firstly, the image consisting of a
blob and a line, 4(c), is compared with the image containing a blob on a fractal
background, 4(e). Thus, the blob is the common structure. It is then compared
with the image containing a line on a background 4(f) where the line is the com-
mon structure. Then, it is compared with the background image, 4(d) where no
common structure exists. This final comparison is repeated to ensure that an equal
number of samples are taken from image pairs with common structure and image
pairs with no common structure. Figure 5(b) shows the results of this experiment.

4.2 Clinical example

In order to investigate the performance of the methods in a clinical environment,
a region of interest (ROI) was selected from a mammogram (mdb245ls) in the
MIAS database [10]. The ROI contains several blob-like structures and several
linear structures. Two suitable pixels are chosen, one from a blob-like calcification
and the other from a linear structure. Figure 6(a) shows the ROI with an arrow
indicating the chosen calcification pixel and figure 7(a) shows the ROI with an
arrow indicating the chosen pixel from a linear structure. For each of the two
chosen pixels, the ‘similarity distance’ between the chosen pixel’s signature and
every pixel signature in the ROI is measured for each of the methods described in
section 3. In contrast to the experiments using synthetic data, real structures may
occur at any orientation and thus it is necessary to search over all orientations
when comparing signatures. Plotting the similarity distance at each pixel forms
a similarity image for each method. These images are inverted such that bright
regions correspond to similar pixels and dark regions correspond to pixels that are
less similar. The image intensity is scaled to the largest and smallest similarity
distance present in the image.

Figure 6 shows the results for the pixel from a calcification and figure 7 shows
the results for the pixel from a linear structure.

5 Results and discussion

5.1 Synthetic example

Figure 5 shows the results of the experiments described in section 4.1 using syn-
thetic data. The ROC curves show the ability of the different measures to dis-
criminate between signatures where a structure was or was not present [6]. The
closer a curve is to the top-left corner, the better its discrimination ability.

The curves in figure 5 indicate that at high specificities, or low false posi-
tive fractions (FPF), the normalised and BPM methods have higher sensitivities
(true positive fractions (TPF)) than either the un-normalised or Euclidean meth-
ods. This means that they will delineate chosen structures more successfully than
the Euclidean method. It is clear that the normalised and BPM methods gener-
ally outperform the un-normalised and Euclidean methods in both experiments.
More surprisingly, the un-normalised method produces a similarity distance that
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Figure 5: ROC curves for comparisons between pixel signatures (a) where one
signature is contained in the other and (b) where both signatures contain a common
structure.

performs less efficiently than the original Euclidean distance. This may be due
to significant contrast differences between signatures from the synthetic images.
In 5(a), there is little difference between the normalised and BPM methods but
in 5(b), the BPM method is clearly superior to all the other methods. This con-
firms the expected superiority of BPM to detect common structure. The second
experiment is a fairer representation of the clinical applications in which the meth-
ods would be used, so these results encourage us to examine the performance of
the methods in the clinical environment.

5.2 Clinical example

Figure 6 and figure 7 show the results of the clinical experiment described in
section 4.2. The two images generated using the un-normalised transportation
method demonstrate markedly inferior performance when compared to the Eu-
clidean, normalised and BPM methods and so they are not included in this paper.
This result is not surprising, given the performance in figure 5.

5.2.1 Blob-like structure

Figures 6(b),(c) and (d) show the ‘similarity images’ generated from comparison
with the pixel from the blob-like calcification indicated in figure 6(a).

The first observation from figure 6 is that the similarity images generated by the
Euclidean and BPM methods are remarkably similar. They have both successfully
delineated blob-like structures and rejected other material. A closer examination
suggests that blob-like structures have been delineated marginally more success-
fully by the BPM method than the Euclidean method but that the BPM method
has generated a similarity image with a marginally higher background intensity.
This is in agreement with the results from the synthetic example in figure 5. It is
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Figure 6: Similarity images for a pixel signature taken from (a) a calcification
using (b) Euclidean, (c¢) normalised transportation and (d) BPM transportation
distances.

probable that, as explained in section 5.1, the Euclidean method is primarily sen-
sitive to intensity contrast in the ROI and as the blob-like structures are generally
quite lucid and don’t sit on very different backgrounds, the Euclidean method has
found them quite successfully. The image generated by the normalised method is
quite noisy but it has successfully delineated blob-like structures. Figure 6 also
shows that the images generated by the normalised and BPM methods have higher
background intensities than the Euclidean method. Again, this is in agreement
with the results in figure 5.

5.2.2 Linear structure

Figures 7(b),(c) and (d) show the ‘similarity images’ generated from comparison
with a pixel taken from the linear structure indicated in figure 7(a).

The difference between the images generated by the Euclidean and BPM meth-
ods in figure 7 is considerably greater than in figure 6. In fact, the most striking
feature of the results is that the Euclidean method has emphatically rejected the
blob-like structures whilst remaining reasonably indifferent to the presence of the
linear structures. This supports the hypothesis that the Euclidean method is pri-
marily sensitive to intensity contrast. Again, the normalised method contains a
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Figure 7: Similarity images for a pixel signature taken from (a) a linear structure
using (b) Euclidean, (c¢) normalised transportation and (d) BPM transportation
distances.

significantly higher level of noise than the other methods (with the exception of the
un-normalised method that is not reproduced here) but the linear structures have
been detected with considerable clarity. Most importantly, the BPM method has
successfully detected linear structures and suppressed other structures and back-
ground. These results indicate that our approach measures signature similarity in
a practically useful way.

6 Future Work

Further investigation of the performance of our approach with clinical data is
necessary before the next stage of research may be undertaken. This will use more
clinical data where ‘structure’ truth is known, as it is with synthetic data. This
permits pixel classification ROC curves to be generated for clinical data which give
a quantitative measure of performance. Once completed, future work will measure
the BPM distance between all signatures in a set, permitting the reconstruction of
the signature positions in a new space with Euclidean separations equal to BPM
distances. A neural network will make the non-linear transformation between the
new and original spaces, providing an efficient run-time method of transforming
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signatures into a space suitable for statistical analysis.
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