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Abstract

Ears are an emergent biometric accruing application advantages including no
requirement for subject contact and acquisition without demand. To recognize a
subject's ear, we aim to extract a characteristic vector from a human ear image
that may subsequently be used to identify or confirm the identity of the owner.
Towards this end, a novel force field transformation and potential well
extraction technique has been developed which leads to a compact
characteristic vector offering immunity to initialization, rotation, scale, and
noise. The image is transformed by considering the image to consist of an array
of Gaussian attractors, which act as the source of a force field. The directional
properties of the force field are exploited to automatically locate a small
number of potential energy wells, which form the basis of the characteristic
vector. We show how this is extracted for a selection of ears, and demonstrate
its advantages. As such, we report a new technique in an exciting new
biometric.

1 Introduction

In the context of machine vision, ear biometrics refers to the automatic measurement of
distinctive ear features with a view to identifying or confirming the identity of the
owner. It has received scant attention compared with the more popular techniques of
automatic face, eye, or fingerprint recognition. However, ears have played a significant
role in forensic science for many years; a burglar was recently convicted of murder in
the UK on the basis of ear prints found at the scene of the crime [1]. An ear
classification method has been developed for use in forensic science [2]. More recently,
an automated system for ear identification has been developed [3].

An ear recognition system could be used like other biometric systems, say for access
control. A database or register would be prepared by processing images of the ears of
authorized personnel to extract a set of characteristic features for each image. Personnel
wishing to enter would have their ears scanned at the entrance and the image would be
processed and compared for a match against the register. The stored feature vectors
would have to be sufficiently distinct so as to be able to distinguish one ear from all the
others and sufficiently robust so that the same vector would be produced every time the
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ear is scanned. These are conflicting requirements and present a challenge to the system
designer.

There are a number of techniques with potential to find and describe a human ear by
computer vision. Essentially, we need to find an ear and describe it for recognition.
Clearly, there are application constraints, such as occlusion by hair, but here we are
concerned with basic technique. Ear extraction could use an active contour [4] but with
initialisation problems which can be relieved by a dual active contour [5], but this still
requires establishment of inner and outer contours. Techniques derived from fingerprint
analysis or texture classification could be used to describe the folds and ridges in a
human ear. To address these issues, a novel two-stage approach has been developed to
provide ear extraction and description concurrently in a reliable and robust manner. The
two stages are: Image to Force Field Transformation; and Potential Well and Channel
Extraction
Firstly, the entire image is transformed into a force field by supposing that each pixel
exerts an isotropic force on all the other pixels which is proportional to the pixel's
intensity. Secondly, the directional property of the ensuing force field is exploited to
automatically locate a small number of potential wells, which correspond to local energy
extrema in the scalar potential energy surface, which underlies the vector force field. It
has been found that the potential well location process shows remarkable invariance to
the initial choice of starting points and that the force field structure and hence the
relative position of the wells is invariant to both scaling and rotation. Further, it appears
quite robust in the presence of noise.

Section 2 deals with the synthesis of the force field and the analysis of the
transformation. We show that it is in fact a linear transformation. Section 3 describes
the potential well extraction process and demonstrates its invariant properties and noise
immunity. Section 4 concludes with some observations about further uses of the new
technique.

2 Image to Feature Transformation

This section deals with the synthesis of the force field and the analysis of the
transformation. We show that it has basic properties: it is a linear transformation with a
matrix representation. The concepts underpinning the force field transformation and the
mathematics used to describe it can be found in various introductory works on physics
[6,7] and electromagnetics [8,9]. Mathematical modeling techniques used in physics
have recently attracted the attention of researchers in computer vision; for example [10]
describes the use of vector potential to extract corners by treating the Canny edge map
of the image as a current density. A recent approach [11] has used a potential field
model in a medial axis transform.

2.1 Force Field Transformation

The image is transformed by considering the image to consist of an array of Gaussian
attractors, which act as the source of a force field. Each pixel is assumed to generate a
spherically symmetrical force field so that the force F;(r) exerted on a pixel of unit
intensity at the pixel location with position vector r by a remote pixel with position
vector r; and pixel intensity P(r;) is given by
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Figure 1 Force field geometry

This calculation is illustrated graphically for the total force acting at a typical pixel
position in Figure 1. The units of pixel intensity, force, and distance are arbitrary, as are
the coordinates of the origin of the vector field. The total force acting on a unit pixel at a
given position is the vector sum of all the forces due to the other pixels in the image and
is given by,
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In order to calculate the force field for the entire image, this equation should be
applied at every pixel position in the image.

2.2 Potential Energy Field

Associated with the force field generated by each pixel there is a spherically
symmetrical scalar potential energy field, where Ei(r) is the potential energy imparted to
a pixel of unit intensity at the pixel location with position vector r by the energy field of
a remote pixel with position vector r; and pixel intensity P(r;), and is given by

P(r;)
Ir; = x]

E;(r)= 3)

The potential energy function of a single isolated pixel appears as an inverted
vortex as shown in Figure 2. Now to find the total potential energy at a particular pixel
location in the image, the scalar sum is taken of the values of the overlapping potential
energy functions of all the image pixels at that precise location and is given by
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This summation is then carried out at each pixel location to generate a potential
energy surface, which is a smoothly varying surface due to the fact that the underlying
inverted vortices have smooth surfaces.

u l
Figure 2 Potential energy surface for an ear (four perspectives on

the right) formed by summing many thousands of potential energy
functions of individual pixels (left).

The vector force field and scalar potential energy fields are related by the fact that
the force at a given point is equal to the additive inverse of the gradient of the potential
energy surface at that point,

F(r)=—grad(E(r))=-VE(r) (5)

2.3 Field Lines, Channels, and Wells

We introduce the concept of a unit value exploratory text pixel to assist in describing
field lines. When such a test pixel is placed in a force field and allowed to follow the
field direction, its trajectory is called a field line. If this process is carried out at many
different starting points a set of field lines will be generated that capture the general
flow of the vector field.

An important property of field lines is that they never cross over for the simple
reason that the field vector at a point is unique. So if two trajectories should happen to
arrive at the same pixel location they will follow the same path from that point onwards.
If other trajectories join this path then they will also follow it, thus forming channels.
We refer to these as potential energy channels.

The potential energy surface may undulate in such a manner that it forms local
extrema called potential energy wells. The potential surface of the ear shown in Figure 2
clearly shows two such wells. Notice that the most prominent of these also shows a
potential channel leading into it from the left in the form of a gently sloping ridge. Field
lines which flow into these wells become trapped because they follow the gradient
towards the extremum where the force is zero.

2.4 Field Line Generation

No attempt is made here to prescribe exactly how field lines should be generated. In the
examples that follow, typically 50 test pixels are initialized at equally spaced intervals in
the form of an ellipse. The coordinates of each test pixel are maintained as real numbers
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rather than as integers. This means that each point moves in the direction indicated by
the force field sample rather than just in one of eight directions, which results in a much
smoother trajectory. No attempt has been made to interpolate between samples,
although this should be possible if more accuracy is required. Each test pixel's position
was updated in increments of one pixel width.

2.5 An Invertible Linear Transformation

We now show that the force field transformation is a linear transformation. It is
sufficient to show that there the force field transformation has a corresponding matrix
representation, since linear transformations between finite-dimensional vector spaces are
precisely those transformations that have matrix representations. The form of the matrix
representation is illustrated for a trivial 2 x 2 pixel image. It is easily verified that this
represents the application of Equation 2 at each of the four pixel locations. This equation
multiplies the vector p of pixel intensities (P;) by the representation matrix A
(comprised of inverse square displacement vectors, d;) to give the force vector F. We
have,

Ap=F
0 d, d, d, F F,
d 0 d d P F r —r,
10 12 13 Do Y here dij _ 5 12 ©)
d, d, 0 d, P, F, ‘rj —rl.‘;
d, d,;, d,, 0 P F
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This is a skew-symmetric matrix of the form, A” =—A. The leading diagonal of
zeros reflects the fact that no pixel attracts itself and the skew symmetry is accounted for
by the fact that we are dealing with a fully connected network but with a pair of directed
edges connecting every pair of nodes. d;

—
N pu— I
Figure 3 Skew symmetry

There is a corresponding representation for the potential energy transformation.
Since the representation matrix is square we naturally ask whether it is invertible. We
find that the force field matrix is singular if the number of image pixels is odd but that it
is invertible if the number is even. The potential energy matrix is invertible in either
case. This result is important because it means that the original image is in principle
recoverable from the potential energy surface, and therefore all the information
contained in the image is preserved in the transformation.

3 Results for Human Ears

In this section we show how the foregoing theory can be applied to the problem of ear
biometrics. We begin by taking our first look at a force field that has been generated
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from a 160 x 100 pixel ear image. It is not possible to see a force field directly because
it consists of vectors so we convert it to a scalar field by taking the magnitude of each
vector. Figure 4 shows the result, where we see that the ear is still clearly recognizable.
We notice that the transformation appears to provide a remarkable degree of intrinsic
smoothing and also that there appears to be something akin to edge detection. The
former can be explained by viewing Equation 2 as a giant smoothing kernel with an
inverse square profile and whose domain is the entire image. The latter we attribute to a
process which we call homogeneous cancellation; local forces are highly symmetrical in
areas of constant pixel intensity and so tend to cancel. The inverse square nature of the
field reduces the effect of forces away from the locality. An imbalance of symmetry in
areas of rapid intensity change results in net forces that cause peaks in the magnitude
response. These and other effects are under investigation and will be reported in due
course.

Figure 4 Magnitude of force field

Having looked at the global description offered by the potential energy surface and
the finer detail contained in the force field magnitude plot we will now see how field
lines can be used to extract information that lies outside the sensitivity span of the
human eye.

Figure 5 Potential well extraction
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Figure 5 shows how 50 test pixels have been arranged in an ellipse shaped array and
then iterated to generate a set of field lines. Even though the potential surface indicates
the presence of two potential wells and one potential channel, we see that field lines are
much more sensitive and have extracted four potential wells whose positions are
automatically indicated on the rightmost image. We see how field lines flow into
potential channels and continue onwards until they terminate in potential wells. For
example, notice how fourteen field lines cross the upper rim of the ear, each joining a
common channel that follows the curvature of the rim rightwards and finally terminates
in a potential well.

Having demonstrated the remarkable ability of field lines to extract potential wells
and depict channels, we now need to check that the outcome remains the same when we
alter the initial conditions such as the initial arrangement of the array of test pixels.
Perhaps more importantly we need to confirm that an image of the same ear at a smaller
pixel resolution produces the same force field. Does noise completely alter the result?
What about different illumination conditions? Does rotating the image have any effect?
Are the results for different ears sufficiently different to act as a discriminant? We report
the results of addressing some of these issues here.

Figure 6 demonstrates initialization invariance. The location of potential wells
is the same in the left and center images with two quite different initializations. This is
hardly surprising since the force field is not altered merely because we choose to enter it
at different locations. Clearly the density of field lines needs to be sufficiently high to
ensure adequate coverage of the image. The rightmost image shows an initialization
along the edges of the image at intervals of 20 pixels. We see that it is a matter of
chance whether the ellipse starting points happen to coincide with one of these field
lines. Again, the wells are in the same position.

anwd = 116, wdir = 4.19 | anwd = 1.16, wdir = 420 | anwd = 1.15, wdir = 4.20

Figure 6 Initialization Invariance

To assess difference between the results, we shall use a measure of the average
normalized distance of the well positions anwd, together with the accumulated direction
to the position of each well-point, wdir. For W wells at points w, these measures are:

w
Z'Wi| 14
i=1 and wdir= z ((W,- ) (7)

i=1

anwd = —————
max(|wi |) -W
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The measures are shown in Figure 6 for each different starting point, and show that
very similar measures are achieved, reflecting visual analysis of these results. Figure 7
demonstrates scale invariance. We see that the structure of the force field is essentially
preserved when an image is at lower resolution. This is an important result because it
means that scale space techniques can be employed so that a low-resolution image could
be used to locate a target’s position and a higher resolution version could then be used to
refine feature information. The earlier measures are again tabulated in Figure 7 and
again show invariance to scale, and are very close to the measures in Figure 6.

170 x 261 pixels 100 x 154 pixels 77 x 50 pixels

anwd = 1.16, wdir = 4.19 | anwd = 1.15, wdir = 4.20 | anwd = 1.17, wdir = 4.21

Figure 7 Scale Invariance

Noise tolerance is demonstrated in Figure 8 where it is seen that the force field
structure is essentially preserved in the presence of Gaussian noise. Notice that the
channels begin to disintegrate into individual wells in the presence of severe noise. The
channel outline is still clearly present so optimal estimation techniques could be
employed in the presence of severe noise.

No Noise Medium Noise Severe Noise

Figure 8 Noise tolerance
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' anwd = 0.92, wdir = 8.17
™ I‘

anwd = 0.75, wdir = 4.58 anwd = 0.95, wdir = 11.8 anwd = 0.86, wdir = 4.02

Figure 9 Different ears produce different features

Figure 9 demonstrates that a variety of different ears produce quite different feature
vectors and that potential channels and well locations are unique to each image. Further,
the measures are quite different to those for Figures 6 to 8 (which are those for a
different ear), which show that the within-class variation appears less than the between-
class variation. Clearly, a richer selection of measures will emphasize this effect. Future
work, on a large database, will aim to confirm the potential for this technique in ear
recognition.

4 Conclusions

We have developed a new feature extraction technique, targeted primarily at ear
biometrics, with remarkable invariance to initialization, scale, and rotation and which
demonstrates good noise tolerance. The beauty of this technique is that an explicit
description of the ear topology is not necessary and extracting the ear biometric is
simplicity itself — merely follow the force field lines and observe eventual clustering of
coordinates. It is anticipated that in order to achieve greater discrimination with larger
ear populations that more information will need to be extracted. This information is
readily available in the topology of the potential channels.

Whilst the force field transformation has been demonstrated in the context of ear
biometrics, it is an important new development in its own right. Preliminary
investigations suggest that the transformation may be used in face recognition. In fact it
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may well be that it provides a general technique of converting complex natural images
into compact signatures in a robust and reliable manner. A very important aspect of the
transformation is the fact that it simulates a natural process, namely the formation of
electric fields in the vicinity of electric charge distributions. For example the image
formed on a charge-coupled device will result in a charge distribution which will have
an associated electric force field. This holds out the prospect of a solid state device with
direct image to force field conversion in real time. Even more interestingly, it may well
be that the image formed on the human retina has a charge distribution and an associated
electric force field. It may well turn out that the nervous system in the human eye is
sensitive to such force fields and exploits them to convert complex images into compact
signatures that assist with pattern recognition.
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