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Abstract

A method of generating complementary eigenspaces optimised for inter-
class and intra-class separability respectively is presented. The objective of
creating these spaces is to improve the efficiency of eigenspace search algo-
rithms. The inter-class optimised space may also be used to improve classi-
fication and a quantitative evaluation of this against conventional Principal
Component Analysis and Canonical analysis (based on Linear Discriminant
Analysis) is presented. A qualitative comparison of the intra-class optimised
space and spaces produced by Principal Component Analysis on single class
data is also presented.

1 Introduction

Principal Component Analysis (PCA) is an efficient way of parameterising the variance
within a multivariate data set such that the dimensionality may be reduced without greatly
affecting approximation accuracy. This is done by finding the eigenvectors of a covariance
matrix formed from the data set and forming an ‘eigenspace’ based on these. In many cases
the variance of the data set along the least significant eigenvectors is negligible and thus
these dimensions may be ignored and the dimensionality reduced. PCA is widely used in
statistics and has been used to great effect in Machine Vision to simplify the variation in
complex data sets such as faces [11], shape outlines [2] and human motion (gait) [5]. If
physical modes of variation within a data set are linear and well decoupled then the param-
eterisation will map closely to these physical modes of variation. In real data sets physical
modes of variation are not always linear or decoupled, however PCA will often produce a
good linear approximation of the variation within the data set.

The fact that data variation parameterisation maps well to physical variation means a
subset of the model parameterisation may be used as a classifier. The problem with the pa-
rameterisation produced by PCA is that both inter and intra-class variation are included. In
cases where physical variation is non-linear and not well decoupled this problem is wors-
ened by parameters including both inter and intra-class information. Canonical analysis is
a variation on PCA in which class information is included such that the ratio of inter-class
to intra-class variance is maximised. This is based around the assumption that the vari-
ation between class means contains no intra-class properties, in other words class means
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have comparable intra-class properties. This is not necessarily a valid assumption, as will
be shown later in this paper.

In this paper we present an alternative to canonical analysis in which two parameterisa-
tions are produced optimised for inter and intra-class variation respectively. This method,
known as ‘delta analysis’, does not rely on assumptions about class means. It is demon-
strated to give greater class separation than canonical analysis on three data sets: two sets
of shape outlines based on the Point Distribution Models [2] (synthetic and real data) and
on Eigenface images [11].

The two spaces produced by delta analysis may be used in conjunction to describe the
variation in a data set with separate inter and intra-class components. This representation
is useful in such applications as object tracking where the inter-class variation of an object
is zero over time and as such need only be determined once. This improves the efficiency
of tracking as only intra-class properties need be determined at each time point.

2 Background

2.1 The Point Distribution Model and the Vector Distribution Model

The Point DistributionModel (PDM) [2] uses PCA to represent the variation withina class
of shapes by modelling the positions of various ‘landmark points’. The model is built from
a set of training shapes which are normalised by position, scale and rotation using an it-
erative process. The x and y values of each set of normalised landmark points are formed
into a vector and PCA is performed on them. By altering each component individually in
the Eigenspace produced, a set of linear ‘modes of variation’ are produced. In many cases
these are close to the physical ways in which the class of shapes varies. When this is the
case these components may be used to classify items within the data set. An alternative
to the PDM is the Vector Distribution Model [7] which uses relative vectors rather than
points but is in other ways identical to the PDM.

2.2 Canonical analysis and the Canonical Space Transformation

Canonical analysis or Linear Discriminant Analysis [6] is a statistical technique used on
multivariate data sets which contain multiple data classes. The objective of this technique
is to separate out inter-class variation from intra-class variation by creating a new space
in a similar way to PCA. For this method two covariance matrices are required: an ‘intra-
class’ matrix (Sw) and an ‘inter-class’ matrix (Sb). These are formed as in equations 1
and 2 respectively. Once the covariance matrices have been formed the generalised eigen
equation given in equation 3 is solved to give a set of eigenvectors which describe a new
space. It should be noted that this space is not necessarily optimised to allow dimensional-
ity reduction as with PCA, however the first components describe inter-class variation and
can as such be used as a data classifier. This has been used recently for face recognition
[4, 10], image retrieval systems [10] and gait classification [5].

Sw =
1

nt

ncX

i=1

niX

j=1

(yi;j � �i)(yi;j � �i)
T (1)
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Sb =
1

nt

ncX

i=1

(�i � �y)(�i � �y)
T (2)

SbE = �SwE (3)

Where:
Sw = Intra-class Covariance Matrix ni = Number of data items in class i
Sb = Inter-class Covariance Matrix yi;j = Data item j of class i
nt = Total number of data items �i = Mean vector for class i
nc = Number of classes �y = Mean vector for entire data set

It can be seen from equation 2 that the notion of ‘inter-class variance’ is based on the
variance of the means. This means that if the means of the data sets do not have compara-
ble intra-class characteristics, intra-class variation will be included in the optimisation (to
some extent). In this situation the result of canonical analysis is a compromise as within
class variation is both maximised and minimised simultaneously.

Swets and Weng [10] combine canonical analysis with PCA to give data reduction and
improved classification. In this scheme canonical analysis is performed on the projections
of the raw data in an eigenspace created by PCA. In this paper we shall refer to this scheme
as the combined eigen-canonical transform.

2.3 Eigenfaces and High Dimensionality PCA

PCA has been applied to greylevels in face and other images to obtain a compact parame-
terisation of these complex data sets [9, 11]. Turk and Pentland [11] highlight the practical
problem of finding the eigenvectors of a high dimensional problem and present a method
for reducing the problem to the order of the number of samples (which is usually much
lower than the number of pixels per sample in these cases). In this method the number
of eigenvectors found is equal to the number of data items rather than the dimensionality,
however this is not a problem as the data set can be described exactly using these eigenvec-
tors. If the number of data items is large this may be reduced using clustering algorithms.
Standard cannonical analysis does not apply well to raw face data as the intra-class covari-
ance matrix is often singular due to the sample size being much smaller than the dimen-
sionality. Belhumeur et al. [1] use a version of the combined eigen-canonical transform
known as Fisherfaces to include class separation in their eigenface representation.

3 Creating Complementary Eigenspaces Using Delta
Analysis

In section 2.2 it was described how canonical analysis can produce an eigenspace that is
optimised for intra-class variability. For data sets where the mean vectors of classes within
a data set do not have the same within class characteristics it can be seen that within class
variation is included in the more significant eigenvectors. Delta analysis is an alternative
to canonical analysis that does not use class mean information, instead modelling within
class and between class variation explicitly using deltas between data items.
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3.1 Creating an Intra-class Optimised Eigenspace

An intra-class optimised eigenspace is created by forming a covariance matrix from the
deltas between each pair of data items as in equation 4. PCA is performed on this matrix
to create a ‘delta eigenspace’. For each pair there are two deltas (AB and BA for pair A
and B) which are equal and opposite to each other. In this way the mean of the deltas is
zero and the relationship between the data and its projection in eigenspace simplifies to
that given in equation 5. This scheme assumes only that the intra-class variation between
classes is comparable.

Sw =
1

nt

ncX

i=1

niX

j=1

niX

k=0;k 6=j

(yi;j � yi;k)(yi;j � yi;k)
T (4)

Where:
yx;y = Member y of class x nc = The total number of classes
nt = The total number of data items ni = The number of members in class i

d = yE (5)

Where:
d = A delta vector E = A matrix of Eigenvectors
y = Vector in ‘Delta Eigenspace’ (One Eigenvector per row)

It would not be correct to project raw data vectors into this ‘Delta Eigenspace’, how-
ever; as the deltas are relative and have mean zero they may be considered with respect to
any point in data space. A new ‘Data Projection space’ with identical axes to the ‘Delta
Eigenspace’ may thus be formed and this will be optimised for within class variation. The
variances of the components in this ‘Data Projection space’ are not equal to the eigenval-
ues produced by PCA but may be calculated by projecting the data into this space.

3.2 Creating an Inter-class Optimised Eigenspace

Creating an optimal inter-class space is harder than creating an optimal intra-class space
since intra-class variation is included in the inter-class deltas. One approach to isolating
inter-class information is to form the product of an inter-class covariance matrix and the
inverse of an intra-class covariance matrix. This is similar to canonical analysis described
in section 2.2, but does not always produce real eigenvalues (this can be a problem with
regular cannonical analysis also [1]).

Instead we use the variance of the intra-class deltas to normalise the inter-class deltas
by dividing each inter-class delta component by the equivalent intra-class variance. This
approach does not include intra-class covariance information and thus relies on inter-class
modes of variation being fairly well de-coupled from within class modes of variation but
will always produce a real solution. Equation 6 describes the exact formulation of the co-
variance matrix.

Sb =
1

nt

ncX

i=1

ncX

j=1;j 6=i

niX

k=1

njX

l=1

�i;j;k;l�
T

i;j;k;l
(6)
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Where:
�i;j;k;l = (yi;j � yk;l)vw nt = Total number of data items
yx;y = Data Vector y of class x nc = Number of classes
vw = (

1

v1
; 1

v2
; :::; 1

vn
) ni = Number of members in class i

(The Inverse Intra-class Variance Vector) nj = Number of members in class j

A between class ‘Data Projection Space’ is formed from the eigenvectors of this co-
variance matrix in exactly the same way as the within class space (see section 3.1).

3.3 Combining Intra-Class and Inter-Class Spaces in Practical
Applications

If we examine the example variance graphs in figure 3.1, which are taken from the cow out-
line example in section 5, we see at first glance that the space produced using conventional
PCA appears much better optimised for dimensionality reduction than the two spaces pro-
duced by delta analysis. However, if we project the first few vectors of these eigenspaces
into PCA eigenspace (see figure 3.2) it is interesting to note that, for this data set, most of
the energy in these vectors lies in the first few components of this eigenspace and all of
the first few eigen components have power in at least one of the delta space vectors.
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Figure 3.1: Variances of Components in Various Spaces
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Figure 3.2: Power of Inter and Intra-class Eigenvectors Projected into PCA Eigenspace

It is not hard to see that we can thus approximate the first few eigenvectors in PCA
eigenspace and thus the entire data set by the first few eigenvectors in within and between
class ‘Data Projection Space’ as in equation 7.
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x � �x+

nwcX

n=1

wnewcn
+

nbcX

n=1

bnebcn (7)

Where:
x = Data vector to be approximated nwc = Dimensionality of Truncated Within Class Space
�x = The mean vector nbc = Dimensionality of Truncated Between Class Space
ewcn

= Within Class Eigenvector n wn = Component Value for Within Class Eigenvector n
ebcn = Between Class Eigenvector n bn = Component Value for Between Class Eigenvector n

The values of nwc and nbc will obviously depend on the particular data set but this ex-
ample suggests significant dimensionality reduction may be possible. The disadvantage of
this scheme is that within class eigenvectors are not orthogonal to between class eigenvec-
tors and thus there is not necessarily a unique solutionwhen X is known and we wish to find
values forwn and bn. A least squares minimisation method may be used to find an optimal
solution however it may be computationally more efficient to firstly find an optimal solu-
tion for inter-class parameters (b1!n) only and then complete the solution by finding the
optimal intra-class parameters (w1!n). This scheme applies well to object tracking where
inter-class parameters are constant over time and need only be found once. An evaluation
of the approximation accuracy of this scheme compared to PCA is presented in section
4.3. Edwards et al. [3] present an alternative scheme for combining different types of
inter-class variation.

4 Application of Method to Data

Delta analysis has been tried on two sets of point data, a synthetic set (Triangle people), and
a set derrived from live data (cow outlines) and a set of intensity images (AT&T Database
of faces [8] - 10 examples of 40 people). Triangle people are very simple figures made
from card triangles and a drawing pin to pivot the ‘legs’. 20 examples of 10 individuals
were created using an 8 point approximation (see Figure 4.1a). 118 cow outlines were
obtained by associating points with landmarks on cows from video sequences (see figure
4.1b). Data sets were divided into equal sized ‘training’ and ‘test’ sets for classification
experiments. Vector distribution models (see section 2.1) were built from the point data
sets and delta analysis performed on the raw vector data. Delta analysis was applied to the
face data using a simple nearest neighbour clustering algorithm on the deltas and the PCA
method described in section 2.3 (reducing covariance dimensionality from 10304 to 200).

a)

b)

Figure 4.1: (a) ‘Triangle people’ data (b) Cow data
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4.1 Evaluation of Inter-class Separation

Delta analysis was performed on the two sets of point data and the resultant space was used
as a nearest neighbour classifier. This was compared to nearest neighbour classifiers in
canonical space, combined eigen-canonical space, PCA eigenspace and raw vector space.
Delta analysis was also performed on PCA data in a similar way to the combined eigen-
canonical transform [10]. It is debatable whether Euclidean or Mahalanobis distance (a
distance metric normalised by variance) should be used in spaces where the variance of
components is known so both were tried where possible for evaluation. Figures 4.2 to 4.5
show the results of these tests. The final row in the tables, ‘Information content’, gives the
sum of the PCA eigenvalues for components used divided by the sum of all eigenvalues
to give an idea of the information content of the reduced space.

Space Used No. Components Used
1 2 3 4 ... 8 ... 16

BC Delta Space (Mahalanobis) 88.5 97 99 96 ... 85.5 ... 85.5

BC Delta Space (Euclidean) 88.5 99.5 99.5 99.5 ... 90 ... 94.5

PCA (Mahalanobis) 86.5 52 78 79 ... 95 ... 98

PCA (Euclidean) 86.5 81 96 95 ... 95.5 ... 95.5

Eigen-Canonical (Max. Dimensionality) 27.5 57 60.5 73.5 ... 42.5 ... 44.5

Eigen-Canonical (Half Dimensionality) 46 62 71 76.5 ... 33.5 ... -

Regular Canonical 71.5 93 91 89 .... 40 ... 24.5

PCA+Delta BC Space (Mahalanobis) 28.5 66.5 86.5 92 ... 95.5 ... 95.5

PCA+Delta BC Space (Euclidean) 28.5 65 87 92 ... 98 ... 98

Raw Vector - - - - ... - ... 94.5

Information content 0.59 0.77 0.89 0.98 ... 0.99 ... 1

Figure 4.2: Classification Accuracy (%) For Various Spaces (Triangle People)
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Figure 4.3: Classification Accuracy (%) For Various Spaces a) Triangle People b) Cows
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Space Used No. Components Used
1 2 3 4 ... 32 ... 64

BC Delta Space (Mahalanobis) 30.3 53.5 58.6 59.6 ... 72.7 ... 73.7

BC Delta Space (Euclidian) 30.3 53.5 60.6 60.6 ... 73.7 ... 73.7

PCA (Mahalanobis) 11.1 25.3 41.4 43.4 .... 85.86 ... 97.8

PCA (Euclidean) 10.1 24.2 36.4 40.4 ... 47.5 ... 47.5

Eigen-Canonical (Max. Dimensionality) 26.3 43.4 59.6 35.4 ... 66.7 ... 96.0

Eigen-Canonical (Half Dimensionality) 28.3 41.4 50.5 45.5 ... 55.6 ... -

Regular Canonical 23.2 36.4 47.5 49.5 ... 22.2 ... 34.3

PCA+Delta BC Space (Mahalanobis) 10.1 10.1 10.1 11.1 ... 46.4 ... 57.5

PCA+Delta BC Space (Euclidean) 11.1 13.1 14.1 13.1 ... 53.5 ... 60.6

Raw Vector - - - - ... - ... 73.7

Information content 0.20 0.33 0.44 0.52 ... 0.97 ... 1

Figure 4.4: Classification Accuracy (%) For Various Spaces (Cows)

Space Used No. Components Used Max.
1 2 3 4 accuracy

Approx. Delta BC Space (Mahalanobis) 21 42 52.5 60.5 92.5[115]

PCA (Mahalanobis) 15 36.75 49.75 57 94 [79]

PCA (Euclidean) 15 36.3 51.8 58.5 90.3 [71]

Eigen-Canonical (Dimensionality = 100) 11 29 38.8 50 74.8 [20]

PCA+Delta BC Space (Mahalanobis) 2.3 1.5 3 4 93 [197]

PCA+BC Delta Space (Euclidian) 2.3 1.5 2.8 3.5 91.3 [188]

Raw Data - - - - 90.3 [10304]

Note: Value in square brackets is no. of components used.

Figure 4.5: Nearest Neighbour Classification Accuracy (%) For Various Spaces (Face
Data)

4.2 Evaluation of Intra-class Separation

The intra-class space produced by delta analysis was compared to spaces produced us-
ing PCA on single class data. The ‘modes of variation’ in these spaces were observed
to be qualitatively similar. To evaluate this we projected the first three eigenvectors of
the intra-class space into these single class PCA eigenspaces. The results, shown in figure
4.6, demonstrate that these eigenvectors lie almost exclusively within the subspace defined
by the first four PCA eigenvectors and (for the triangle people especially) are composed
mostly of a single PCA eigenvector.
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Figure 4.6: Mean of Projections of Eigenvectors into Single Class Spaces a) Triangle Peo-
ple b) Cows

4.3 Evaluation of Combined Representation

We approximated both real and synthetic data using truncated delta and standard PCA
spaces to evaluate the trade off between data compression and accuracy in these two schemes.
The mean vector error was calculated and normalised by the average vector size over all
data sets. Delta space approximations were performed with equal numbers of inter and
intra class components (i.e. 2 components = 1 intra and 1 inter class component).

Components Used 2 4 6 8 16

a) PCA Eigenspace 11.4[11.3] 3.8[3.6] 2.4[2.2] 1.5[1.2] 0[0]

Delta Eigenspaces 14.9[13.0] 10.3[10.2] 8.3[9.3] 7.8[9.1] 0[0]

Components Used 2 4 6 8 16 32 64

b) PCA Eigenspace 18.3[16.7] 15.4[14.2] 13.9[11.8] 12.4[10.2] 8.6[6.9] 4.4[3.6] 0[0]

Delta Eigenspaces 19.0[18.1] 17.5[16.4] 16.4[14.9] 15.6[14.2] 12.5[11.0] 8.5[7.4] 0[0]

Components Used 10 20 50 100 200

c) PCA Eigenspace 16.6 [14.4] 13.9 [12.5] 10.1 [9.3] 6.7 [6.1] 0 [0]

Delta Eigenspaces 18.9 [15.9] 16.5 [14.2] 13.1 [11.5] 9.7 [8.8] 5.8 [5.6]

Figure 4.7: Mean and Standard Deviation of Error Rates (%) For Different Approxima-
tions a) Triangle People b) Cows c) Faces

Tables 4.8a-c show that the approximation accuracy for a delta space approximation is
comparable but marginally worse than the equivalent eigenspace approximation with the
same number of components. This is as would be expected as the eigenspace representa-
tion is optimised for dimensionality reduction. This reduction in dimensionality reduction
must however be traded against the advantages of class separation.

5 Conclusions

It has been shown that delta analysis can outperform PCA, canonical analysis and com-
bined PCA and canonical analysis (CST) in simultaneously producing optimal inter-class
separation and dimensionality reduction. The intra-class optimised spaces produced by
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delta analysis are qualitatively similar to spaces produced by performing PCA on single
class data sets assuming that intra-class variation is comparable across data sets. It has
been shown in section 3.3 that subsets of the two parameterisations produced may be com-
bined to form a powerful approximation to the data which may be used in shape search.

It has also been shown that canonical analysis and delta analysis do not always perform
as well on the modified data set produced using PCA as on the raw data. In the eigen-
face data these methods applied to PCA data actually perform worse than PCA alone for
the initial modes. The reason for these observations is that these methods work best when
physical modes of variation are well de-coupled in the data representation. The eigenspace
transform performed by PCA can, under certain circumstances, make the task of class sep-
aration harder by producing mixed modes which are combinations of two or more physical
modes of variation. This is not to say this two stage approach is not valid as it may reduce
the computational cost of creating and working with these inter and intra-class optimised
spaces which is important in many applications.

The delta analysis approach is applicable to a wide variety of tasks including object
recognition using outlines or greylevels and deformable object tracking as well as non ma-
chine vision applications where a multivariate classifier is required.
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