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Abstract

This paper presents a new theoretical framework for motion segmentation
based on the motion of tracked region edges. By considering the visible
edges of an object, constraints may be placed on the motion labelling of
edges. This enables the most likely region labelling and layer ordering to be
established, thus producing a segmentation.

An implementation is outlined and demonstrated on test sequences con-
taining two motions. The image is divided into regions using a colour edge-
based segmentation scheme and the normal motion of these edges is tracked.
The EM algorithm is used to partition the edges and fit the best two mo-
tions accordingly. Hypothesising each motion in turn to be the foreground
motion, the labelling constraints can be applied and the frame segmented.
The hypothesis which best fits the observed edge motions indicates the layer
ordering and leads to a very accurate segmentation.

1 Introduction

The segmentation of a video sequence into moving objects is a first stage in many further
areas of video analysis. For example, in the fields of tracking and video indexing it is
desirable to divide the elements in a sequence into foreground and background objects and
perform independent analysis on the different elements. Further, the MPEG-4 standard
represents sequences as objects on a series of layers, and so these objects and layers must
be identified to encode a video sequence.

Early motion segmentation techniques estimated the global motion field (optic flow)
across the frame and then grouped together pixels with a similar motion. These require
smoothing to obtain a reliable flow field and this smoothing cuts across motion bound-
aries, which means that the edges of objects cannot be accurately determined. Some
success has been achieved by assuming that the motion consists of a number of layers,
each with a different, smooth, flow field [1, 2, 7, 15]. The number of layers and the motion
models may be simultaneously estimated within a mixture model framework [1, 15]. An-
other common framework for estimating the otions of the layers is the dominant motion
approach. This technique robustly estimates the motion which fits the most pixels (the
dominant motion), segments out these pixels, and then repeats [8, 11].
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The pixel-based optic flow techniques suffer from the problem that they do not con-
sider the wider scope of the frame, and do not encode the knowledge that object motion is
spatially coherent. A Markov Random Field (MRF) approach (e.g. [10, 15]) can enforce
spatial coherency, but its emphasis on clustering pixels together can once more lead to
inaccurate motion boundaries.

Clues to the location of motion boundaries can be found by considering the structure
of the image. Smooth regions are expected to move coherently, and changes in motion
are more likely to occur at edges in the image. One approach to make use of this, the
normalized cuts method of Shi and Malik [12], combines both the motion and intensity
information of pixels into a weighted graph; the problem is then reduced to finding the
best partitioning of this graph.

Rather than computing the image motion, an alternative starting point is an intensity-
or colour-based segmentation of the image, extracting information about the image struc-
ture prior to any motion analysis. The assumption made by this approach is that the
boundaries of the segmented regions are a superset of the motion boundaries; the task is
then to identify the correct motion labelling for the different regions. Work by Thomp-
son [14] followed this route and, more recently, Bergen and Meyer [3] and Moscheni and
Dufaux [9] have had some success in iteratively merging neighbouring regions if their mo-
tion fields are similar. The current paper shows that comparable results can be obtained
by only considering the motion of the edges of regions.

The ordering of the layers in a sequence is usually glossed over in the literature and
the dominant motion is often considered to be that of the background. The correct identi-
fication of the layer ordering is essential dealing with occlusion and producing an accurate
segmentation. In one of the few papers to consider the ordering of motion layers, Bergen
and Meyer [3] note that errors in the motion estimation of pixels generally occur when the
pixels have been occluded and so regions containing errors near a region boundary can be
labelled as being occluded by that neighbouring region. The current paper shows that the
constraints on the edge labelling provide enough information to determine the ordering.

This paper follows the region merging paradigm, and demonstrates that only the mo-
tion of the edges of regions need be considered. Edges are tracked between frames and
partitioned according to their real-world motions. Given knowledge of the layer ordering,
the regions can be labelled to be consistent with the majority of the tracked edges. By
hypothesising and testing all possible layer orders, the ordering which fits the most edges
can be found and the associated segmentation extracted.

The theoretical framework for analysing edge motions is presented in Section 2. Sec-
tion 3 explains the current implementation of this theory, with experimental results pre-
sented in Section 4.

2 Theoretical framework

Segmentation attempts to identify the edges of the object (or objects) in the image; it is
therefore the edges in the image which are important. Edges are also very good features
to consider: they can be found more reliably than corners and their long extent means that
a number of measurements may be taken along their length, leading to a more accurate
estimation of the motion. In this section we outline a framework by which we can resolve
the region labelling from these edge motions.
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2.1 The image motion of edges

Edges in an image are due to the texture of objects, or their boundaries in the scene. Edges
can also be due to shadows and specular reflections, but these are not considered at this
stage (however, see Figure 4 for an example). It is assumed that as an object moves all of
the edges associated with the object move. Hence edges in one frame may be compared
with those in the next and partitioned according to different real-world motions.

The motion in the sequence is assumed to be layered i.e. one motion takes place
completely in front of another. In the case of two motions these are called foreground and
background. It is also assumed that any occluding boundary (the edge of a foreground
object) is visible in the image. From this it follows that each edge segment obeys the
same real-world motion along its length. Given these assumptions, we can state

Axiom 1 If an edge undergoes a motion then at least one of the two regions it bounds
must also undergo that motion.

Axiom 2 The occluding boundary between two objects moves according to the fore-
ground motion.

These are sufficient to identify the foreground motion and label the region via two conse-
quences:

Consequence 1 A region belongs to the foreground layer only if all of its bounding edges
are foreground.
Proof (by contradiction) Suppose one of the edges of a region belonging to the fore-
ground layer obeys the background motion. Axiom 1 then implies that the region on the
other side of this edge must be a background region, and thus this edge is part of an oc-
cluding boundary. Axiom 2 states that, in this case, the edge must have the foreground
motion, which violates the supposition.

Consequence 2 No junction may have a single foreground edge. At edge junctions where
two different layers meet, two of the edges must belong to the foreground motion.
Proof If one edge at a junction obeys the foreground motion then, by Axiom 1, one of
the regions that it bounds must have the foreground motion. One of the other edges at this
junction must also bound this region, and according to Consequence 1 this edge must also
have the foreground motion.

2.2 The labelling of motions and regions

Given a set of edges labelled according to their motions this framework enables the or-
dering of the motions to be determined and the regions to be labelled. In order to label
regions from the edges, the ordering of the motion layers must be known. This may, in
theory, be found by observing the junctions where edges of different motions meet since,
according to Consequence 2, in every case the same motion should be represented by two
edges. However, in practice, some edges are mislabelled and this can cause the analysis
of edge junctions to yield the incorrect result.

An alternative approach is to hypothesise possible orderings and label regions ac-
cordingly. The axioms and consequences of Section 2.1 provide strong constraints on the
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(a) Frame 1 (b) Frame 2 (c) Labels

Figure 1: Line drawing. (a) and (b): Two frames as a line drawing. (c) Edges labelled
according to rigid motions (black is motion A). The edge labels are sufficient to identify
motion A as foreground and segment the image.

edge labelling given a region labelling. The correct ordering is provided by the hypothesis
under which the constrained edges which best fit the observed edge labelling.

The regions may be labelled by noting that every region entirely surrounded by fore-
ground edges is foreground; every other case is background (Consequence 1). The edge
labelling can then be tested by checking that every edge of a foreground region is fore-
ground and every other edge is background.

2.2.1 A synthetic example

Figure 1 illustrates two frames from a synthetic sequence. In Figure 1(c) the edges from
frame 1 have been partitioned according to the two rigid motions in the scene. If motion
A (black) were foreground, the head and torso, being entirely surrounded by motion A
edges, would be foreground (by Consequence 1). All other regions would be background.
This exactly satisfies the edge labelling.

If motion B (grey) were foreground, only the rectangle in the top right corner is en-
tirely surrounded by foreground edges; every other region would be background. How-
ever, many of these regions also have motion B edges, which violates Axiom 1. The more
likely ordering is therefore that motion A is foreground, with the head and torso regions
foreground and everything else background.

3 Implementation

3.1 Finding edges

To implement this framework, regions and edges must first be located in the image. The
implementation presented here uses a scheme developed by Sinclair [13]; other edge-
based schemes, such the morphological segmentation used in [3] are also suitable.

Colour edges are found in the image and Voronoi seed points for region growing are
then found at the locations furthest from these edges. Regions are grown, by pixel colour,
with image edges acting as hard barriers. The result is a series of connected, closed, region
edges generated from the original fragmented edges (e.g. Figure 3(a)). The edges of these
regions are divided into edge segments for labelling. (An edge segment is a length of edge
between two edge junctions.)
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Figure 2: Edge Tracking. Initialise tracking nodes along the edge (in black), then search
normal to the edge to find the new location (white lines) The best-fit motion is the one that
minimises the squared distance error between the tracking nodes and the edge.

3.2 Labelling edges

The second stage of the implementation is the partitioning of edges into sets correspond-
ing to different real-world motions. In this paper the case of two motions (background
and foreground) is considered; the estimation of more than two motions within the same
framework is a subject of ongoing research. It is assumed that the image motions due to
the real-world motion may be modelled (to within a few pixels) by an affine transforma-
tion. The tracking method used in this paper is robust to small errors and so the affine
assumption works well while having the benefit of simplicity.

Labelling the edges is a circular problem:

1. If an edge partitioning is known, the two motions can be calculated as those which
best fit the two sets of edges

2. If two motions are known, the edges can be partitioned according to the motion that
they fit best

To resolve this problem an iterative approach, the Expectation-Maximisation (EM) algo-
rithm [5], is used. Given an initial partitioning, Stage 1 calculates the motions. These
motions may then be used to update the partitioning (Stage 2) and the process repeated
until convergence. Alternatively, the process may be initialised with two motions.

In this implementation, both stages of the EM process make novel use of technology
adapted from contour and model tracking [4, 6]. For each edge in the first frame, tracking
nodes are assigned at regular intervals along the edge (see Figure 2). The motion of these
nodes are considered to be representative of the edge motion. This approach provides a
vast reduction in the data to be processed; there are around 1; 400 tracking nodes in a
typical frame.

3.2.1 Estimating motion from edges

The tracking nodes from the first frame are mapped into the next according to the current
estimated motion. A 1-dimensional search is then made in the direction of the edge normal
in order to find a matching edge, based on both image gradient and colour. This distance,
dt, is measured (see Figure 2).

At each tracking node the expected image motion due to motion m (with parameters
�m) can be calculated. The best fit solution is the one which minimises

min
�m

X
e

X
t2e

r
2

m;t (1)
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where e indexes the edges and t the tracking nodes. The residual, rm;t, is the difference
between the measured distance, dt, and the component of the image motion normal to the
edge. This expression may be minimised using least squares.

3.2.2 Partitioning edges by their motion

The probability that edge ej belongs to motion m may be calculated from the residual,
assuming a Gaussian distribution:

E
j
m = exp

0
@
�

X
t2ej

r
2

m;t=2�
2

1
A (2)

� is set at 2 pixels, which is a typical RMS error. When performing EM the edge proba-
bilities are fed back and used in Stage 2, where each edge contributes to each motion in
proportion to the probabilities.

3.2.3 Solution by Expectation-Maximisation

The process is initialised by assigning one motion to be the mean (the best fit to all edges)
and the other to be the null motion. This is a reasonable guess since in typical video
sequences either the camera is stationary, or is tracking the foreground object. The other
motion will be closer to the mean motion than to the null motion, thus aiding convergence.

The EM iteration process is repeated until convergence (i.e. until there is no significant
change in probabilities), or for 20 iterations. Figures 3(b) and 3(c) illustrate the final
estimated motions for one of the test sequences.

3.3 Region labelling

The final stage is region labelling. This presents another circular problem—the regions
may not be labelled until the ordering of the layers is known, but the ordering of the layers
is most reliably determined from testing a region labelling (see Section 2.2). This may be
resolved by hypothesising and testing both possible motion orderings. A segmentation is
produced under each case and the one which best fits the edge labelling is used.

3.3.1 Labelling regions in the presence of outliers

The region labelling rule, Consequence 1, states that if a region is entirely surrounded by
foreground edges then it is foreground, else it is background. This is a powerful rule, and
as a result it is very sensitive to labelling errors. A single erroneous background edge will
cause the regions on either side to be mislabelled. Since shorter edges have less tracking
nodes and so a higher chance of an error, the region labelling scheme is adjusted to allow
a small number of mislabelled edge pixels around a region.

A vote of foreground versus background pixels is totalled around the region. Each
edge bounding the region contributes its number of pixels to the vote, voting as either
foreground or background depending upon which is more likely for the edge. Uncertain
edges, those with a probability of less than r1 (60%), do not vote. If the foreground vote
is greater than r2 of the total (r2 = 85%) then the region is foreground. This yields an
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initial segmentation (e.g. Figure 3(e)), but one in which the labelling constraints have not
been enforced

3.3.2 Enforcing labelling constraints

A simple region labelling based on the original edge labels does not automatically lead
to one entirely consistent with the edge labels. A single foreground edge between a pair
of a background regions will have no effect on the region labelling, but violates Axiom
1. In making the region labelling robust to outliers, some background edges will also be
ignored.

To ensure that all labels are consistent, the edges are relabelled from the regions. Each
region labels its edges with the same motion as itself. Where another region has already
labelled an edge as foreground, this may not be over-written by a background edge (at an
occluding boundary it is the foreground edge which is visible). Given this new, definite,
edge labelling the regions may be relabelled under the basic rule of Consequence 1.

Some regions may not have been labelled under Section 3.3.1 if all of their edges
were uncertain. These are also labelled when the constraints are enforced, taking on the
labelling of their neighbours. If there are clusters of unlabelled regions, this constraint
step may need to be repeated until no more changes are observed in the region labelling.

3.3.3 Identifying the correct layer order

For the two-motion case considered in the paper, the region labelling and constraint prop-
agation is performed twice: with motion A as foreground and then motion B, to give two
possible segmentations. The correct segmentation is the one where the edge labels from
the final segmentation best fit the observed edges. (i.e. the one which leads to the least
residual error across all of the tracking nodes,

X
e2A

X
t2e

r
2

A;t +
X
e2B

X
t2e

r
2

B;t (3)

where A is the set of motion A edges and B the set of motion B edges.)

4 Experimental Results

4.1 “Foreman”

The algorithm described in this paper has been successfully tested on a number of dif-
ferent motion sequences, of which two are presented here. The first example considers
two frames from the “foreman” sequence, commonly used to test motion segmentation
schemes. In this part of the sequence, the foreman’s head moves slightly to his right.
Figure 3(a) shows the frame to be segmented, overlaid with the detected region edges.
The EM motion estimation and partitioning converges quickly, and it can be seen from
Figures 3(b) and 3(c) that motion A provides a good match to the background and motion
B a good match to the foreground.

The edge labels are shown in Figure 3(d). Almost every edge has been labelled
correctly—the few outliers are short edges with very few tracking nodes (and thus more
susceptible to noise). Hypothesising motion A as foreground leads to a significantly
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(a) Frame 47 with edges (b) Frame 50 with edges and
nodes under motion A

(c) Frame 50 with edges and
nodes under motion B

(d) Labelled edges. Grey is
motion B

(e) Initial foreground seg-
mentation

(f) Foreground segmentation
after enforcing constraints

Figure 3: “Foreman” example. The foreman moves his head slightly to the left. Despite the
small motion, the pixels and edges are matched well. Motion B is identified as foreground
and the head is segmented well.

higher squared residual error, assuming independent Gaussian distributions for each node.
Consequently, motion B is foreground.

The initial region segmentation (with motion B as foreground) is very good. The
relaxation stage successfully enforces the constraints and corrects some of the remaining
errors. The system now labels 97.0% of the pixels correctly, compared with a hand-
selected segmentation of the regions. The majority of the errors, on his shoulders, could
perhaps also be considered correct since his shoulders do not move significantly as his
head turns. This is a significantly better result than in [9] and comparable to [3], except
that the segmentation used in this paper provides a more accurate occlusion boundary.

4.2 “Car”

The “car” sequence was recorded with a hand-held MPEG video camera. The camera
tracks the car as it moves across to the left. This is an unusual sequence as the dominant
motion is that of the foreground object, an object which also contains a window through
which the background can be seen.

The EM again converges well, with the motions correctly extracted and most edges
labelled correctly. When the two possible hypotheses are considered, the errors due to
motion A are smaller, again by a significant amount. The foreground motion is therefore
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(a) Frame 490 with edges (b) Frame 491 with edges
and nodes under motion A

(c) Frame 491 with edges and
nodes under motion B

(d) Labelled edges. Grey is
motion B

(e) Initial foreground seg-
mentation

(f) Foreground segmentation
after relaxation

Figure 4: “Car” example. In the “car” sequence a car is tracked by the camera. Since both
the car and the background motion are horizontal this provides a tricky segmentation prob-
lem. Motion A is identified as the foreground motion and the car is successfully segmented,
with even the window correctly assigned to the background.

correctly identified as motion A. The final segmentation is good, with 97.3% of pixels
correct (again, compared with a manual segmentation). The very top of the car, and part
of the front, are segmented into the background; this is because these parts of the car have
visible reflections of the background, which move as the background. The window has
been correctly segmented as background.

5 Conclusions and discussion

The most important elements in segmenting a video sequence are the the edges of the
objects. If we assume that the object edges can be seen in the frame, it is then simply
a case of identifying these edges. In this paper a framework has been developed which
shows how analysis of labelled edges in a frame can be used to identify the ordering of
motion layers and extract the correct labelling of regions in the frame.

Implementing this framework has shown it to produce very good segmentations. A
good edge labelling is provided by performing region segmentation and then tracking
edges between frames. Techniques have then been developed which correctly identify the
layer order and label the regions even in the presence of some edge mislabelling. The
result is a very accurate motion segmentation from an analysis of only two frames. The
implementation is also efficient since only a small fraction of the pixels in the frame are
considered.
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Ongoing work looks at the segmentation of multiple motion layers and the extension
of the tracking and segmentation techniques to multiple frames. In this larger system, the
system presented here provides a useful bootstrap for an accurate segmentation of a whole
motion sequence.
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