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Abstract

This paper presents a novel three-dimensional model-based tracking

system which has been incorporated into a visual servoing system.

The tracking system combines modern graphical rendering technology

with constrained active contour tracking techniques to create wire-

frame-snakes. It operates in real time at video frame rate (25 Hz)

and is based on an internal CAD model of the object to be tracked.

This model is rendered using a binary space partition tree to perform

hidden line removal and the visible features are identi�ed on-line at

each frame and are tracked in the video feed. The tracking system has

been extended to incorporate real-time on-line calibration and tracking

of internal camera parameters. Results from on-line calibration and

visual servoing experiments are presented.

1 Introduction

The tracking of rigid three-dimensional objects is useful for numerous applications,

including motion analysis, surveillance and robotic control tasks.

This paper tackles two problems. The �rst is the accurate tracking of a known

three-dimensional object in the �eld of view of a camera. The output of this tracker

is a continuously updated estimate of the pose of the object being viewed. The

second is the tracking of the internal camera parameters themselves. The resulting

tracking system has been used to close the loop in a robot control system to guide

a robotic arm to a previously taught target location relative to a workpiece.

This work has been motivated by tasks such as the robotic manufacture of cars

and ships. These tasks are characterised by the need to accurately position a tool

on the workpiece which may be inaccurately located with respect to the camera.

The examples presented in this paper come from the domain of the welding of ship

parts.

Because a video signal contains a very large amount of data, it is important

to extract only a small amount of salient information, if real-time frame (or �eld)

rate performance is to be achieved [1]. This observation leads to the notion of

feature based tracking [2]. Image contours are a particularly powerful feature and

have been used by many succesful tracking systems [3, 4, 5, 6].
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A similar approach to that presented here has been taken b y the RAPiD system

[4] which is also based on tracking visible features of a three-dimensional model.

The wire-frame-snake system presented here di�ers tw o important ways from the

RAPiD approach, namely that the visible features are computed on-line (rather

than pre-computed for what is essentially a viewsphere) and that the edge features

to be tracked are dynamically reweighted in real-time based on their saliency. The

�rst aspect permits the tracking of complex three-dimensional structures, while

the second improves robustness and precision of the tracker.

Another important approach to tracking is the condensation algorithm [5]

which obtains extremely high robustness by tracking a discretely sampled proba-

bilit y distribution of hypotheses from frame to frame. A signi�cant di�erence in

this w orklies in the trade-o� betw eenrobustness and precision. Whereas con-

densation typically takes a large number of samples with a comparatively small

number of edge measurements per sample, the wire-frame-snake tracking system

uses a large number of measurements in order to obtain high precision. T ypically,

400 edge measurements are made per image frame.

The use of visual feedback ouput by such tracking systems for robotic control

is increasingly becoming an attractive proposition. A distinction is often made

[7] bet w eenimage-based [8] and position-based [9] visual servoing. The approach

presented here projects the action of three-dimensional motion into the image

where it is �tted to image measurements.

2 Theoretical framework

The approach proposed here for tracking a known 3-dimensional structure is based

upon maintaining an estimate of the camera projection matrix, P , in the co-

ordinate system of the structure. This projection matrix is represented as the

product of a matrix of internal camera parameters:

K =
h
fu s u0
0 fv v0
0 0 1

i
(1)

and a Euclidean projection matrix representing the position and orientation of the

camera relative to the target structure:

E =
�
R t

�
with RRT = I and jRj = 1 (2)

The projective co-ordinates of an image feature are then given b y

�
u
v
w

�
= P

�
x
y
z
1

�
(3)

with the acutal image co-ordinates given by

( ~u
~v ) =

�
u=w
v=w

�
(4)

Rigid motions of the camera relative to the target structure betw een consecu-

tive video frames can then be represented by right multiplication of the projection
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matrix by a Euclidean transformation of the form:

M =

�
R t

0 0 0 1

�
(5)

These M , form a 4 � 4 matrix representation of the group SE(3), which is a

6-dimensional Lie Group. The generators of this group are typically taken to be

translations in the x, y and z directions and rotations about the x, y and z axes,

represented b y the following matrices:

G1 =

�
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

�
;G2 =

�
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

�
; G3 =

�
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

�
; (6)

G4 =

�
0 0 0 0
0 0 1 0
0 �1 0 0
0 0 0 0

�
;G5 =

�
0 0 �1 0

0 0 0 0
1 0 0 0
0 0 0 0

�
; G6 =

�
0 1 0 0
�1 0 0 0

0 0 0 0
0 0 0 0

�

These generators form a basis for the vector space (the Lie algebra) of deriva-

tives of SE(3) at the iden tity.Consequently, the partial derivative of projective

image co-ordinates under the ith generating motion can be computed as:�
u0

v0

w0

�
= PGi

�
x
y
z
1

�
(7)

with

Li =

�
~u0

~v0

�
=

 
u0

w
+ uw0

w2

v0

w
+ vw0

w2

!
(8)

giving the motion in true image co-ordinates. A least squares approach can then

be used to �t the observed motion of image features betw eenadjacent frames.

This process is detailed in Section 3.3.

In a similar manner, the motion of features in the image due to the change of

camera parameters can be computed and these motion �elds incorporated into the

least squares solution. This extension is discussed in Section 4.

2.1 Tracking edges

An important aspect of the approach presented here is the decision to track the

edges of the model (which appear as intensity discontinuities in the video feed).

Edges are strong features that can be reliably found in the image because they

ha ve a signi�cant spatial extent. F urthermore, this means that a number of mea-

surements can be made along each edge, and thus they may be accurately localised

within an image.

This approach also takes advantage of the aperture problem (that the compo-

nen t of motion of an edge, tangent to itself, is not observable locally). This problem

actually yields an enormous bene�t since the search for intensit y discontinuities in

the video image can be limited to a one dimensional path that lies along the edge

normal, n̂ (see Figure 1) and thus has linear complexity in the search range, rather

than quadratic. This bene�t is what makes it possible to track complex structures

in real time on a standard workstation without additional hardware. The normal

component of the motion �elds, Li are then also computed (as Li � n̂).
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Figure 1: Computing the normal component of the motion

3 Tracking system

The three-dimensional tracking system makes use of constrained snake technology

[6] to thefollo w edges of the workpiece that are visible in the video image. One

no vel aspectof this work is the use of a real-time hidden-line-removal rendering

system (using binary space partition trees [10]) to dynamically determine the visi-

ble features of the model in real-time. This technique allows accuarate frame rate

tracking of complex structures such as the ship part shown in Figure 2.

Figure 3 sho wssystem operation. A teach cycle, the system renders the ex-

pected view of the object (a) using its current estimate of the projection matrix,

P . The visible edges are identi�ed and tracking nodes are assigned at regular

in tervals inimage co-ordinates along these edges (b). The edge normal is then

searched in the video feed for a nearby edge (c). T ypicallym � 400 nodes are

assigned and measurements made in this way. The system then projects this m-

dimensional measurement vector onto the 6-dimensional subspacecorresponding

to Euclidean transformations (d) using the least squares approach described in

Section 3.3 to give the motion, M . The Euclidean part of the projection matrix,

E is then updated by right multiplication with this transformation (e). Finally,

the new projection matrix P is obtained by multiplying the camera parameters

K with the updated Euclidean matrix to give a new current estimate of the local

position (f). The system then loops back to step (a).

3.1 Rendering the model

In order to accurately render a CAD modelof a complex structure suc h as the

one shown in Figure 2 at frame rate, an adv ancedrendering technique such as

the use of binary space partition trees is needed [10]. This approach represents

the object as a tree, in which eac h node contains the equation ofa plane in the

model, together with a list of edges and convex polygons in that plane. Each plane

partitions 3-dimensional space into the plane and the tw o open regions either side

of the plane. The tw o branches of the tree represent those parts of the model that

fall in to these t wo volumes. Thus the tree recursively partitions space into small
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Figure 2: Image and CAD model of ship part

regions which, in thelimit, con tain no remaining model features. The rendering

takes place by performing an in-or derscan of the tree, where at eac h node,the

viewpoint is tested to see if it lies in front, or behind the plane. When this is

determined, those features lying closer to the camera are rendered �rst, then the

plane itself, and �nally, the more distant features. The use of a stencil bu�er

preven ts over-writing of nearer features by more distant ones and also provides a

layer map when the rendering is complete. The ship part contains 12 planes, but

since 8 of these (corresponding to the T and L beams) are split into two parts by

a vertical plane partition, there are 20 nodes in the tree.

3.2 Locating edges

Once rendering is complete, the layer map is used to locate the visible parts of

eac h edge by comparing the assigned layer of the plane for each edge in the model

with the layer in the stencil bu�er at a series of points along that edge. Where

the depths agree, trackers are assigned to search for the nearest edge in the video

feed along the edge normal (see Figure 4).

The result of this process is a set of trackers with known position in the model

co-ordinate system, with computed edge normals and the distance along those

Parameters

Initialisation
E = EM

P = KE

M

Matrix

Motion

Matrix
K

Model Edges

Render
Model

Locate Visible

Locate Edges
in Video Feed

Update

Projection

Euclidean

Compute

Camera

Coarse Hand

(a)

(b)

(c)

(e)

(d)

(f)

Figure 3: T racking system operation
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Figure 4: T racking nodes assigned and distances measured

normals to the nearest image edge. Grouping these distances together provides an

m-dimensional measurement vector.

3.3 Computing the motion

Step (d) in the process involves the projection of the measurement vector onto the

subspace de�ned by the Euclidean transformation group. The action of eac h of

the generators of SE(3) on the tracking nodes in image co-ordinates can be found

by computingPGi and applying this to the homogeneous co-ordinates of the node

in 3-space. This can be projected to give a vector, L
�
i describing the image motion

of the �th node forthe ith generator of Euclidean motion of the object. L
�
i � n̂�

then describes the magnitude of the edge normal motion that would be observed

in the image at eac h node for each group generator. These can be considered

as a set of m-dimensional vectors which describe the motion in the image for

eac h mode of Euclidean transformation. The system then projects the m-vector

corresponding to the measured distances to the observed edges onto the subspace

spanned by the transformation vectors. This provides a solution to �nding the

geometric transformation of the part which best �ts the observed edge positions,

minimising the square error betw een the transformed edge position and the actual

edge position (in pixels). This process is performed as follows:

Oi =
X
�

d�(L
�
i � n̂�) (9)

Cij =
X
�

(L�i � n̂�)(L�
j � n̂�) (10)

�i = C�1

ij Oj (11)

(with Einstein summation convention over latin indices). The �i then contain the

quantity of each mode of Euclidean motion that has been observed. The �nal step

is to compute the actual motion of the model and apply it to the matrix E in (2).

This is done by using the linear approximation to the exponential map connecting

�i with SE(3).

Et+1 = Euclideanise(Et(I +
P

i�iGi)) (12)
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Figure 5: F rames from tracking sequence

Because the motion is typically small, this approximation is accurate, although

the matrix E must be coerced back into true Euclidean form after being updated.

This section has described the basic version of the tracking system. This system

performs well over a wide range of con�gurations (see Figure 5) and is extremely

robust to occlusion (see Figure 6). One key advantage of this approach is that it is

possible to extend it to include more complex situations such as tracking camera

parameters in addition to object motion.

4 On-line camera calibration

The in ternal characteristics of a pinhole camera can be described with �ve pa-

rameters. These are the focal length, aspect ratio, u and v co-ordinates of the

principal point and the skew [11]. The matrix of camera parameters is shown in

(1). In practice, the skew of the camera is known to be zero and here we enforce

that condition. Thus there are just four parameters to be modelled.

F or eac h of these parameters, there is an associated vector �eld, just as for

motion in space. The vector �elds corresponding to the camera parameters can be

easily described in terms of the
�
u
v

�
co-ordinates in the image plane. This creates

Figure 6: F rames from tracking sequence with occlusion
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four new vector �elds, Li; 7 < i < 10. These are added to the vector �elds already

used for tracking in the system which then �ts a least squares solution in ten

dimensions instead of six. The resulting system is then able to dynamically track

the camera parameters in addition to the motion of the target and is able, for

example, to distinguish betw een motion tow ards the target and a zoom.

4.1 Results

Some experiments to calculate the accuracy of camera calibration calculated in

this way were performed.

4.1.1 Stability with respect to image noise

Firstly , the con�guration of the camera and a calibration grid were kept �xed and

the calibration calculated on a series of runs in order to assess the impact of image

noise on the calibration. An 8.5 mm lens was used for this experiment. The mean

and standard deviation of the focal length (f =
p
fufv), aspect ratio(a = fu=fv)

and principal point (u0; v0) over these runs were computed. The results were f =

785:55�0:05 pixels, a = 0:950055�0:00004 and (u0; v0) = (336:4�0:2; 278:8�0:5)

pixels. In all cases the standard deviation was O(10�4) times the characteristic

scale (for u0 and v0 this is the focal length).

4.1.2 Stability with respect to con�guration

Secondly, a series of runs were performed in which the con�guration was varied in

order to provide an estimate of the accuracy of the calibration measurements. A

16mm lens was used for this experiment, for which the results were f = 1442:2�7:1
pixels, a = 0:94995�0:00067 pixels and (u0; v0) = (355�10; 282�24) pixels. The

standard deviation values obtained in this experiment were all less than 1% of

the characteristic scale (with the exception of v0 which was slightly larger). This

compares well with standard calibration techniques [11 ] which was tested with

images captured from the sequences and also generated errors of O(1%).

5 Visual servoing system

The visual serv oing system tak es the Euclidean matrix, E as output from the

tracking system and uses this within a non-linear control law to provide feedback

to servo the robot to a stored target position. These are learned by acquiring the

Euclidean matrix with the robot placed in the target position by the supervisor.

The inverse of this target matrix,E�1
t , is easily computed and the product of this

with the current position matrix yields the transformation from the target position

to the current position.

T = EE�1
t (13)
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The translation and rotation vectors that must be applied to the robot are then

easily extracted from this representation. (here i; j; k = 1,2,3):

ti = Ti4 (14)

r0i =
1

2

X
jk

�ijkTjk

ri =
r0i sin

�1(jr0j)
jr0j (15)

The vectors t and r are then multiplied by a gain factor and sent to the robot

as end e�ector translantion and rotation velocities. The gain is dependent on

the magnitudes of t and r so that small velocities are damped to obtain higher

precision, while large errors in position may be responded to quickly. A maximum

velocit y clamp is also applied for safety reasons and to prevent possible instabilities

due to latency.

5.1 Results

The tracking system and visual servoing system have been tested in a number

of experiments to assess their performance both quantitativ ely and qualitatively.

These experiments were conducted with an SGI O2 workstation (225 MHz) con-

trolling a Mitsubishi RV-E2 robot.

5.1.1 Stability of the track er with respect to image noise

The stability of the trackerwith a stationary structure w asmeasured to assess

the e�ect of image noise on the tracker. The standard deviation of position and

rotation as measured from the Euclidean matrix were measured over a run of 100

frames. F rom a viewing distance of 30cm, the apparant r.m.s. translational motion

w as found to be 0.03mm with the r.m.s.rotation being 0.015 degrees.

5.1.2 Accuracy of positioning

The accuracy of positioning the robot was measured with two experiments. Firstly ,

the ship part was held �xed and the robot asked to home to a given position from

a number of di�erent starting points. When the robot had ceased to move, the

program was terminated and the robots position queried. The standard deviation

of these positions was computed and the r.m.s. translational motion was 0.08mm

with the r.m.s. rotation being 0.06 degrees.

The second accuracy experiment was performed by positioning the ship part

on an accurate turn table. The part was turned through �fteen degrees in one

degree rotations and therobot ask ed toreturn to the target position each time.

Again, the position of the robot was queried and a circle was �tted to the data.

The residual error was computed and found to give an r.m.s. positional error of

0.12mm per measurement (allo wing for the three degrees of freedom absorbed into

�tting the circle).
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6 Conclusion

This paper has presented an extensible framework for real-time three-dimensional

tracking of complex structures. The system has been implemented and been shown

to exhibit su�cient accuracy for many useful tasks, suc h as robot control. The

formulation used is extensible, as has been demonstrated by the incorporation of

on-line camera calibration which provides real-time performance and yields accu-

racy comparable to existing techniques.
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