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Abstract

The paradigm of perceptual fusion provides robust solutions to computer
vision problems. By combining the outputs of multiple vision modules, the
assumptions and constraints of each module are factored out to result in a
more robust system overall. The integration of different modules can be re-
garded as a form of data fusion. To this end, we propose a framework for
fusing different information sources through estimation of covariance from
observations. The framework is demonstrated in a face and 3D pose tracking
system that fuses similarity-to-prototypes measures and skin colour to track
head pose and face position. The use of data fusion through covariance in-
troduces constraints that allow the tracker to robustly estimate head pose and
track face position simultaneously.

1 Introduction

The approach we have taken to computer vision, referred to as perceptual fusion, involves
the integration of multiple sensory modules to arrive at a single perceptory output. The
sensory modules all use the same physical sensor, the video camera, but compute different
information. A data fusion approach is needed to integrate these different sources of
perceptual information.

Data fusion is traditionally used to increase the accuracy of the measurement being
performed, and to overcome unreliability in sensors or uncertainty in sensor outputs.
There is another benefit of data fusion which is particularly useful for computer vision
problems. Different sources undergoing fusion are usually based on different assump-
tions, some of which may be invalid at any given time. By performing data fusion, the
assumptions are in a way “factored out” [2]. Hence fusion can reduce a system’s depen-
dence on invalid a priori assumptions and make the system more robust.

Given that data fusion is a beneficial approach, the primary issue is how to combine or
fuse the outputs of systems that are possibly disparate. We propose the use of covariance
estimation to fuse the outputs of perceptual sources. The covariance of the module out-
puts is estimated from training examples, and then used in the overall system to impose
constraints. By imposing mutual constraints on the observed quantities, the covariance-
estimation approach improves the robustness of the system, and has the advantage that
the constraints are derived (learned) from practical measurement rather than heuristics.
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We demonstrate this approach in a case study on pose estimation which implicitly also re-
quires accurate face position alignment and tracking over time. In Section 2, we describe
head pose estimation based on similarities to prototypes. Tracking of pose and face posi-
tion is performed using the CONDENSATION algorithm [4]. The covariance of the state
quantities is learned from examples in order to estimate the state propagation density. The
correlation between face and head positions is used to model the state-conditional density
function. Experiments are given in Section 3 and we draw conclusions in Section 4.

2 Fusion of Head Pose and Position Alignment

Automatic, robust pose estimation from a video sequence in real time is non-trivial.
It implicitly requires pose-invariant face detection. We have previously developed a
method for identity-invariant pose estimation based on similarities to faces in a proto-
type database [3]. Under suitable conditions, a temporal trajectory of tilt (elevation) and
yaw (azimuth) angles can be computed from a video sequence. However, the similarity-
based criterion is noisy and has many local optima, and the face position in the image
must be determined independently. The existing method either relies on a Polhemus ori-
entation and position sensor worn by the subject to obtain the face position or relies on the
identity of the subject [3, 5]. Here we describe a method to track both head pose and face
position by fusing similarity measures and skin colour information. This is only made
robust through the estimation of their covariance.

2.1 Pose Estimation in Similarity Space

Using the similarity-based method, a novel face is represented by a vector of similarities to
prototype faces. This concept is illustrated in Figure 1. For pose estimation, the similarity
vector of a novel face is computed for a hypothesised pose and compared with vectors at
other poses. In the case that similarities are measured as Euclidean distances, one would
expect the magnitude of the vector at the correct pose to be a minimum for the correct
pose. However, this criterion is subject to many local minima. To further constrain the
criterion to focus on the relevant optimum, one can assume that similarity vectors vary
smoothly as the subject changes pose, and use a compound criterion including the distance
between the current and previous similarity vectors:

S(t) = alls@)| + (1 — o) d(s(t),s(t — 1)) (1

where s(t) is the similarity vector at time ¢, a € [0, 1] is a real-valued mixing parameter.

A major problem in automatic real-time pose tracking is that one does not know where
in the current image the face is located. Given an initial position and pose for the face,
one could assign a search region in pose and image space and seek the minimum value of
the criterion in Equation(1). This method is impractical, however, since the criterion S(t)
is subject to the following sources of noise:

local optima distract the search toward the wrong position, scale and pose,

the input face may be poorly aligned with the database images,

the illumination conditions may vary, and

the database images themselves may be poorly aligned both in position and pose.

The noise in similarity measures can be compensated by incorporating other visual cues.
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Figure 1: Illustration of the similarity-to-prototypes representation. A database contains
example faces (top) of N different people at different pose angles. For a given pose, a new
face x (centre of circle) is compared with each prototype face at that pose y; (perimeter of
circle) using a similarity function h(-). The similarity measures s; are concatenated into
a similarity vector s. In the example shown, eleven prototypes were used to represent a
face therefore its similarity vector at any pose has 11 dimensions.

2.2 Tracking Pose using CONDENSATION

Since the similarity measures are noisy, a tracking algorithm is required to simultaneously
track pose, face position and scale. These different quantities can be fused together by the
tracker. This approach is likely to fail if the quantities are assumed to be independent be-
cause the tracker states will then be under-constrained. Through covariance estimation of
the tracked parameters, the tracker can be better constrained and become more robust. For
our purposes, however, the tracker can still be easily misled by local optima in similarity
measures and loses track of both face position and pose. The tracker can be made more
robust by incorporating additional visual information such as skin colour to determine the
approximate face position. Skin colour is an inexpensive but effective visual cue that can
be easily computed in real-time at each frame [8]. Using skin colour, a separate head
tracker can be used to supply a bounding box of the head position in the image. While the
head box is generally larger than the face box, the displacement between head and face
box position provides an additional constraint. In particular, correlations between head
pose and the face-head displacement can be exploited.

For the tracking task, we adopt the CONDENSATION (CONditional DENSity propa-
gATION) algorithm [4]. CONDENSATION maintains a population of hypothesised states
x;(t) and their posterior probabilities. Compared to a Kalman filter (a single density based
model) commonly adopted for temporal tracking, CONDENSATION is more generic and
flexible due to its propagation of multiple density models at any given time. Hence it is
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more able to recover from distractions. When a new measurement (z;) is obtained, the
states and their probabilities are updated through two steps:

1. Drift and Diffusion: the states are modified through a deterministic component
obtained from knowledge of the problem, and random perturbation based on the
probability distribution of state changes. The overall step equates to sampling from
the distribution p(x;(t)|x;(t — 1)).

2. Measurement: a measurement is imposed on the distribution by re-
calculating the posteriors p(z;|x;(t)). This distribution again comes from knowl-
edge of the problem.

Using CONDENSATION to track head pose and face position, a state is defined to contain
the object-centred face position (x, y) with respect to the body, the scale r of the face box,
the head yaw (azimuth) ¢ and the head tilt (elevation) 6:

X = [z,y,r,$,0] ()

The scale r is the ratio of the face box size to the prototype image size in the similarity
database. The measurements used by the tracker are the input image containing the face,
and the head box position from the independent skin colour tracker.

To track states using CONDENSATION, two distributions p(x;(¢)|x;(¢ — 1)) and
p(z¢]x;(t)) must be modelled. It is in the modelling of these distributions that tracked
and measured quantities are fused through covariance estimation.

2.3 Fusing State Quantities

For the state propagation distribution p(x;(t)|x;(t — 1)), previous applications of CON-
DENSATION [1] have used a heuristic drift equation, and then arbitrarily added indepen-
dent Gaussian noise to each element of the state. This approach has two problems. First,
the noise parameters are not estimated from measurement, and could cause the tracker to
lose lock. Second, the assumption of independence of state elements under-constrains the
search space so that computational resources are wasted, and the tracker is distracted by
local optima.

Our approach is to fuse the state elements by estimating their covariance. The ra-
tionale is that when a person turns their head, there is a correlated change in face box
position. Let the state change between two frames be

Ax(t) =x(t) —x(t — 1) 3)

A state transition covariance matrix was estimated from training video sequences of peo-
ple varying their head pose freely in a number of scenes resulting in 454 sample frames.
Head pose and face position were measured using a Polhemus sensor attached to the sub-
ject’s head. The estimated state transition covariance matrix is:

Azx Ay Ar A¢p Af
Az | 12.090 0.558 0.019 15.551 0.153

s _ Ay | 0.558 3.495 0.021 1.026 4.239 @)
¢ Ar | 0.019 0.021 0.112 0.237 0.171
A¢ | 15.551 1.026 0.237 27.701 0.816

Af | 0.153 4.239 0.171 0.816 7.854
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All distances are measured in pixels and angles measured in degrees. For simplicity,
changes in size (Ar) are here measured in pixels rather than as a change in ratio. There
are clearly correlations between the state changes which are intuitively appealing. There
is a strong correlation between change in z-position and yaw, and a strong correlation
between changes in y-position and tilt. Changes in the horizontal quantities have a higher
magnitude than changes in the vertical quantities. It is precisely these constraints that will
make the CONDENSATION state sampling more robust and efficient.

Assuming that these correlations are independent of absolute pose and position, the
state update distribution is modelled as a fully-covariant Gaussian:

p(x(t)|x(t — 1)) = (Ax(t))ngl(Axu))) )

1 1
(-l
V27|, |2 p( 2

2.4 Fusing Measurements

The state-conditional distribution p(z:|x;(t)) is based on the similarity criterion and on the
displacement between the face and head position. Let the signed z-difference between the
centres of the face and head boxes be dz. The state-conditional distribution is then:

p(z[xi(t)) = p(S(®)[xi(t)) p(d|9) (6)

where p(S(t)|x;(t)) is the similarity-based weighting function given the hypothesised
state, and p(dx|¢) is a modelled density function expressing the dependence of face box
z-displacements on yaw angle. The latter function incorporates observed correlations
between absolute face position and pose. Displacements in the y-direction are too unre-
liable to be used due to varying neck lines, hair colour and illumination conditions. The
two components of Equation(6) work together to constrain the tracker to the correct pose
and face position. The two constituent densities are defined as follows:

1. The similarity-based weighting function gives high probabilities for low dis-
similarity values, and vice versa:

(N

p(S@)x(1)) = exp <_M>

2
202

where S, is the minimum and o, is the standard deviation of S-values observed
over a set of training sequences.

2. The displacement density function is based on the observation that facial position
displacements are correlated with pose. For example, as a subject turns his head to
the left, the box surrounding the face moves left-of-center of the body, while the box
surrounding the head tends to stay central. Therefore covariance between absolute
face position and head pose is exploited, whereas only relative face position is used
in Equation(5). The function also constrains the face position to lie close to the
independently-tracked head position so that the tracker is not distracted by non-
faces.

The displacement density model is shown schematically in Figure 2. The den-
sity function is modelled as a Gaussian distribution with standard deviation o, and
mean dependent on the currently hypothesised yaw angle. The solid line in the
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figure shows how the mean varies with yaw. The displacements dx; and dxo are
measured from video sequences at the extremes of pose, 0° and 180° yaw. At
frontal views high probabilities are given to small displacements, whereas at ex-
tremes of yaw the high probabilities go to larger signed displacements. At any yaw,
a state with a face position that is far from the head tracker position is given a low
probability.

x-offset

- 180 yaw (degrees)

Figure 2: An illustration of head and face box offset probability density in z-direction.

3 Experiments

A system based on the method described has been developed and tested on both recorded
and live video sequences of subjects constantly varying their head pose. Two sequences
are shown here for illustration. Each sequence is 200 frames long and the initial face
position is detected using a Support Vector Machine based generic face model [6, 7].
Figure 3 shows an example of the initial face box detected by the SVM. The outer-most
box is obtained by spatially clustering skin-coloured pixels. The SVM searches within
this box to find the face box. The head tracker then performs a localised search around
the face box to obtain the head box. To simplify the process, a subject is initially assumed
to face the camera giving 8 = 90°, ¢ = 90°. The Polhemus sensor is worn by the subject
to obtain the approximate ground-truth head pose angles for comparison. Our pose tracker
uses only image data, and is independent of the Polhemus.

The yaw and tilt angles estimated and tracked over time by the fusion-based tracker
are compared to the measurements of the Polhemus in Figures 4. Five hundred state
samples were used in the CONDENSATION tracker. In both cases, the tracker is able
to approximately track the head tilt and yaw angles. Examples of the continuous visual
output from the tracker are shown in Figure 5. Each frame shows the whole image (top),
the cropped tracked face (lower-left), and the tracked head pose (lower-right) using an
intuitive dial. In this example, the tracker accurately follows the face and head pose until
time ¢14 when the tracker momentarily loses lock on face position and starts to move away
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Figure 3: Example of the information used to initialise the pose tracker.

from the face. It regains lock again at £15. At ¢15 the system is starting to lose pose but
recovers gradually over time. The ability of the tracker to recover from momentary loss
of lock demonstrates the importance of fusing the face position and pose. Without this
fusion, the tracker would have wandered away to incorrect poses or non-faces.

To demonstrate the role of covariance estimation in tracker robustness, we remove the
covariance information from the tracker. This step requires the off-diagonal elements of
the state covariance matrix (Equation (4)) to be set to zero, and the removal of p(dx|¢)
from the state-conditional distribution (Equation (6)). The tracker fully loses lock without
recovering after 31 frames. The results are shown in Figure 6 for the first 31 frames (3
seconds). Even though the tracked pose angles have not deviated wildly, the face box
is far from its goal. Since the similarity criterion is only locally optimal, the tracker is
unable to regain lock.

4 Conclusion

The concept of data fusion through covariance estimation has been demonstrated in a
face position alignment and pose tracking system. Face position and head pose were
fused to form state update and measurement noise models for a pose tracker. A principled
approach to fusion of different visual cues utilises additional constraints and improves
robustness.
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Figure 5: An example of continuous face position alignment and pose tracking over time.
Each frame shows the whole image (top), the cropped tracked face (lower-left), and the
tracked head pose (lower-right).
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(a) Yaw (left) and tilt (right) angles for first 31 frames of a test sequence.
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Figure 6: Results of pose tracker on second sequence without the use of covariance.
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