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Abstract

Identity-independent estimation of head pose from prototype im-

ages is a perplexing task, requiring pose-invariant face detection. The

problem is exacerbated by changes in illumination, identity and facial

position. Facial images must be transformed in such a way as to em-

phasise di�erences in pose, while suppressing di�erences in identity.

We investigate appropriate transformations for use with a similarity-

to-prototypes philosophy. The results show that orientation-selective

Gabor �lters enhance di�erences in pose, and that di�erent �lter ori-

entations are optimal at di�erent poses. In contrast, PCA was found

to provide an identity-invariant representation in which similarities can

be calculated more robustly. We also investigate the angular resolution

at which pose changes can be resolved using our methods. An angular

resolution of 10� was found to be su�ciently discriminable at some

poses but not at others, while 20� is quite acceptable at most poses.

1 Introduction

Head pose, closely related to gaze, is an important visual cue for interpretation of

human behaviour and intentions. Estimation of head pose from video sequences is

a highly complex task, since it implicitly requires face detection at arbitrary pose.

Our approach to identity-independent pose estimation over a wide range of

angles is based on similarities to prototypes [4, 6]. The approach uses second-order

similarity to obtain robust similarity measures from sparse data [1]. Our current

system estimates head yaw (azimuth) � on the range [0�; 180�] and tilt (elevation)

� on the range [60�; 120�]. The face prototype database consists of facial images

from several di�erent people at di�erent poses in 10� increments. Given a novel

face image and hypothesised head pose, the distance of each prototype to the

novel face is calculated. The novel face is then represented in similarity space as

a vector of dis-similarities: si = [di;1; di;2; : : : ; di;N ]
T, where N is the number of

human subjects in the database, and di;j is the distance from the face i to subject

j at the same hypothesised pose. The principle is that distances in similarity space

are smoother than in the original high-dimensional image space.
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The method primarily relies on a general assumption that di�erent people at

the same pose look more similar than the same person at di�erent poses.

In other words, pose is a stronger indicator of image-space similarity than identity.

This assumption is here referred to as the pose similarity assumption. As one can

imagine, this assumption is valid only for signi�cant changes in pose. Neverthe-

less, even for signi�cant pose di�erences the assumption may be invalid because

intensity images are sensitive to variations in illumination and mis-alignment. To

validate the assumption, the facial images must be transformed to compensate for

these variations, and to emphasise di�erences in pose over di�erences in identity.

The work presented here investigates the following two issues. First, for a

given pose, what transformation of the images is optimal to exaggerate di�erences

in pose and suppress di�erences in identity? Second, what is the minimum angular

separation that can be resolved using similarity-based methods?

The most obvious transformation for images is to apply an image �lter. The

optimal �ltering of prototype images is expected to be di�erent at each pose angle,

because di�erent features are important at di�erent poses [3]. The most natural

�ltering of images for this task is to use orientation-selective features. Gabor �lters

are particularly appropriate because they incorporate smoothing which reduces

sensitivity to spatial mis-alignments. Recent studies on Gabor �lters have shown

that these �lters are approximately the basis functions for natural images [7].

While �ltering may enhance pose-speci�c features, it is expected to provide

only small invariance to identity. Intuitively, a representation of the images is

required that encodes only very coarse-scale intensity variations with pose. It

has been shown in [3] that principal component analysis (PCA) can be used to

discard identity information while maintaining pose information. PCA has the

extra advantage that similarity measures in a low-dimensional space are more

robust and easier to compute than in a high-dimensional space.

In this work, we de�ne a criterion to quantify the goodness of a given trans-

formation method for pose prototypes. The criterion is then used in a series of

experiments. In the �rst experiment, Gabor �lters are examined as a method for

enhancing pose di�erences at each pose angle. In the second experiment, PCA is

used to represent prototypes and its identity-invariant properties are examined.

In the third experiment, the criterion is used to determine the angular resolution

at which neighbouring poses can be resolved.

2 The Pose Similarity Ratio

When matching images from various poses to a group of prototype images, it is

desirable to calculate similarity in a space that is invariant to identity and sensitive

to di�erences in pose. To select a good transformation, a criterion is required to

allow us to compare image representations. The criterion should be based on

the pose similarity assumption, that di�erences in pose are more signi�cant than

di�erences in identity. Our criterion is de�ned as the following ratio:

r (�; �; f(�)) =
�d (�; �; f(�))

�d (�� ��; � � ��; f(�))
(1)

This ratio shall be referred to as the pose similarity ratio where:
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� f(�) is a transformation function that maps the images to some other repre-

sentation either with the same dimensionality, e.g.: an image �lter, or with

lower dimensionality, e.g.: linear projection.

�
�d (�; �; f(�)) is the average distance between f -transformed prototypes of

varying identity at a given pose:

�d (�; �; f(�)) =

PN�1

i=1

PN

j=i+1 d
�
f(xi�;�); f(x

j

�;�)
�

PN�1

i=1

PN

j=i+1 1
(2)

where x
i
�;� is the prototype image of subject i at pose angles (�; �), and

d(x1;x2) is the distance between two points in high-dimensional space.

�
�d (�� ��; � � ��; f(�)) is the average distance between f -transformed proto-

types at the given pose and prototypes of varying identity and pose over the

given range of neighbouring poses:

�d (�� ��; � � ��; f(�)) = (3)PN

i=1

PN

j=1

Py=�+��

y=����

Pt=�+��

t=���� d
�
f(xiy;t); f(x

j
y;t)
�
:�(y � �; t� �)PN

i=1

PN

j=1

Py=�+��

y=����

Pt=�+��

t=���� �(y � �; t� �)

where ��, �� are the sizes of the yaw and tilt neighbourhoods, and �(y �

�; t� �) is a delta function to discount the distance of a prototype to itself:

�(a; b) =

�
0 if a = 0 and b = 0;

1 otherwise
(4)

The ratio can be interpreted as follows: when the ratio is small, faces at the given

pose are more similar to each other than to faces at neighbouring poses, and the

pose similarity assumption is valid. For large ratio values, faces at neighbouring

poses are more similar than at the same pose, and the assumption is invalid. At

a given pose, the ratio can be minimised with respect to f(�).

We now describe three experiments using the ratio criterion. All results are

based on a database of 30 � 30 images collected from N = 8 subjects at poses

over the pose sphere of range � 2 [0�; 10�; : : : ; 180�] and � 2 [60�; 70�; : : : ; 120�].

In all experiments, the distance function used was Euclidean distance. Images

were always post-normalised by subtracting the mean intensity from each pixel

and dividing by the intensity standard deviation.

3 Filtering for Pose Discrimination

Consider what sort of image �lters would be appropriate for discriminating di�er-

ent poses. It is expected that di�erent image features are important at di�erent

poses, and that those features will be oriented di�erently. For example, the mouth

may be important at frontal poses and the nose at pro�le poses. Therefore �lters

that highlight oriented features are appropriate. In this section, we investigate

whether Gabor �lters are useful for discriminating pose.
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Gabor �lters are oriented sinusoidal �lters modulated by a Gaussian envelope.

Examples of Gabor �lters are shown in Figure 1 for angles 0, 30, 60, 90, 120

and 150 degrees. The real and imaginary parts are shown on the left and right

respectively. These �lters have a natural application for pose estimation because

pose estimation involves variations in orientation [3].


 = 0� 
 = 30� 
 = 60� 
 = 90� 
 = 120� 
 = 150�

Figure 1: Gabor �lters at di�erent orientations 
. The real part is on the left,

imaginary on the right.

To see whether Gabor �lters are useful for discriminating pose, let us evaluate

the pose similarity ratio of Equation(1) at a �xed pose but with varying Gabor

�lter orientation. The �lter orientation 
 is varied from 0� to 180� in 9� increments.

The tilt angle is �xed at 90� (frontal view) and is not varied in the calculation of

the ratio, i.e.: �� = 0. The yaw neighbourhood �� is set to 30�and the size of the

�lters is 13�13. The result is a series of ratio values versus �lter orientation. The

process has been repeated at di�erent �xed poses with yaw varying over the range

[0�; 90�], and tilt �xed at 90�. The results are shown in Figure 2(a). Clearly the

ratios vary smoothly with �lter orientation, and there are well-de�ned minima in

the curves. The implication is that Gabor �lters reveal oriented features in the

facial images that are speci�cally appropriate for discrimination at a given pose.
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(a) Varying yaw, with tilt �xed at 90�.
The neighbourhood is based on yaw only.
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(b) Varying tilt, with yaw �xed at 90�.
The neighbourhood is based on tilt only.

Figure 2: Pose similarity ratios for varying head pose and �lter orientation.

In Figure 2(b), the correlations between �lter orientations and pose variations

in tilt are presented. Yaw is �xed at 90�, and the pose neighbourhood is �� = 0�,

�� = 10�. Tilt is varied over 60� to 120�. Again it is observed that the ratios

vary smoothly with �lter orientation, and that the curves contain well-de�ned

minima. We can conclude that features at a speci�c orientation are important for
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discriminating poses. This raises the question: does the best �lter orientation vary

with pose, and if so, how does the orientation vary across the pose sphere?

Let us now proceed to examine the best single orientation-selective Gabor �lter

for each pose by minimising the pose similarity ratio at each pose. To determine

the best �lter size, the average minimum ratio for a range of �lter sizes is shown in

Table 3. It can be noted that the ratio decreases monotonically with the �lter size.

Taking 13�13 as the �lter size, and using a neighbourhood of �� = 20�, �� = 10�,

the optimal �lter orientations and corresponding ratios are shown in Figure 3.

Filter Size (in pixels) 9 11 13 15

Average Best Ratio 0.974617 0.964791 0.958090 0.953220

Table 1: Average minimum pose similarity ratios for �lters of di�erent sizes.

Examining Figure 3(a), it is clear that di�erent orientations are optimal for

di�erent poses. Considering that the pose database itself contains spatial and

pose mis-alignments, the �lter orientations vary gradually with pose angle. There

is also a fair degree of symmetry in the orientations about central yaw, � = 90�. In

Figure 3(b), the minimum ratios are represented as intensities, with darker colours

denoting lower (better) ratios. The pose angles containing an \�" have a ratio

greater than 1. The results show that Gabor �lters are able to discriminate faces

from neighbouring poses except at some poses on the fringe of the pose sphere.

There are a few other points of interest from Figure 3(b). The lowest ratios

are at frontal yaw, reinforcing the intuition that pose discrimination is easier at

frontal views. The ratios when the subject is looking upwards are generally worse

than when looking downwards. This could either indicate that the database ac-

quisition system is less accurate at low tilts, or it could be a natural phenomenon.

The asymmetry in ratios about central yaw is due to mis-alignments and varying

illumination conditions in the database.

To summarise, orientation-speci�c features are found in facial images at di�er-

ent poses, and Gabor �lters can be used to �nd these features. We now proceed

to look at transformation for identity invariance.

4 Identity Invariance through PCA

We have seen how orientation-selective �lters can emphasise di�erences in pose,

but can we also suppress identity? To obtain some invariance to identity, we

investigate the use of principal component analysis (PCA) on the pose data. A

previous investigation into pose distributions in PCA space found that continuous

changes in yaw result in smooth manifolds in eigen-space with identity collapsed

[3]. Here we extend the study by calculating the pose similarity ratio based on

similarities calculated in the PCA space.

To examine pose manifolds in PCA space, two PCA bases are calculated: one

from images with tilt �xed at 90� and yaw varying from 0� to 90�, and the other

with yaw �xed at 90� and tilt varying from 60� to 120�. The range of poses for

the investigation is restricted so that the PCA bases are based on a manageable
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(b) Corresponding minimum pose similarity ratios with whiter cells corresponding to higher
ratios. Ratios greater than one are denoted by \�".

Figure 3: Results for best �lters of size 13� 13.

range of intensity variations. In each case, prototypes from all 8 subjects are

used to construct a PCA basis, and all images are blurred and normalised before

use. Figure 4 shows the prototypes of varying pose projected onto the �rst major

principal components. Prototypes belonging to the same person are joined by a line

in order of pose. In Figure 4(a) for varying yaw, the curves form a horseshoe shape,

but the identities are clustered fairly tightly. The �rst two principal components

account for 54% of the variance in the data. In Figure 4(b) as tilt is varied, the

same manifold shape is observed, and the �rst two components account for 55% of

the variance. The �rst two principal components largely describe changes in pose,

while the remaining components primarily encode changes in identity and facial

expression. Therefore, projection onto the �rst two principal components provides
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a representation that is invariant to identity but sensitive to pose.

PC1
PC3

PC2

(a) Prototypes at � = 90� and

� = [0; 10; : : : ; 90] projected onto �rst 3
principal components.
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(b) Prototypes at � = 90� and

� = [60; 70; : : : ; 120] projected onto �rst 2
principal components.

Figure 4: Pose manifolds in PCA space.

The PCA bases look appealing, but do they maintain su�cient discernibility

between poses? To investigate, we calculate the pose similarity ratio with distances

calculated in PCA space. The ratio is calculated at a range of poses covered by

the PCA bases using a neighbourhood only in the axis of pose variation. For

varying yaw, the neighbourhood is �� = 10�, �� = 0�, and for varying tilt the

neighbourhood is �� = 0�, �� = 10�. The average best ratio is plotted versus the

number of principal components used, where the average is over varying yaw in

Figure 5(a), and over varying tilt in Figure 6(a). Comparing with the mean ratios

for Gabor �lters in image space shown in Table 3, the PCA-based ratios are much

lower. Therefore PCA not only maintains good pose discrimination, it does so

much more e�ectively than in the image space.

Using only the �rst two principal components to calculate similarities, the

ratios are plotted for varying yaw and tilt in Figures 5(b) and 6(b). On the same

axes, the ratios are plotted for similarities measured in image space (no PCA, but

blurred and normalised). Comparing the ratios with and without PCA, it is clear

that PCA is a much more appropriate representation for the similarity calculations.

Relating these results back to the Gabor �lters, the non-PCA ratios plotted here

are consistently higher than those obtained using Gabor �lters, emphasising the

need for Gabor �ltering to exaggerate pose di�erences in image space.

In summary, PCA is an appropriate representation for pose similarity pro-

totypes because it suppresses identity variations while maintaining sensitivity to

pose. We have also seen that pose similarity ratios both in PCA space and after

Gabor �ltering in image space are better than those based on the original images.

The fact that lower ratios are obtained with PCA than when using the Gabor �l-
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(b) Ratios versus yaw angle for similari-
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space using the �rst 2 coe�cients.

Figure 5: Comparison of pose similarity ratios calculated in image space and PCA

space, for varying yaw angles.

ters does not necessarily mean the orientation-selective �lters are no longer needed.

Such a comparison is unfair because distance calculations are generally less robust

in the high-dimensional image space due to the curse of dimensionality. Gabor

�lters are also expected to improve the smoothness of the PCA representation by

reducing the �rst two components' sensitivity to illumination changes.

5 Valid Angular Resolution

Logically there is a limit to the angular resolution with which poses can be dis-

criminated using similarity-based methods. For example, at di�erences of 1� yaw,

two 30� 30 facial images would look so similar as to be indistinguishable. So the

question arises: what is the minimum angular resolution at which pose di�erences

can be discerned in the presence of varying identity and illumination? To �nd out,

we modify the denominator of the pose similarity ratio. Equation(3) becomes:

�d (�� ��; � � ��; f(�)) =

PN

i=1

PN

j=1

P
y=����

P
t=���� d

�
f(xiy;t); f(x

j
y;t)
�

PN

i=1

PN

j=1

P
y=����

P
t=���� 1

(5)

Here the ratio only involves neighbouring poses at �� ��, rather than all poses in

the range of � � ��; : : : ; �+ ��, and similarly for �. This is akin to sampling the

database at a lower angular resolution. Now we can plot the modi�ed ratio versus

angular resolution to �nd the minimum acceptable resolution.

At a range of yaws and two di�erent tilts, the pose similarity ratio is calculated

for the optimal �lter (see Section 3) at varying yaw resolution �� 2 [10�; 60�] but

with no tilt neighbourhood, �� = 0. The results are shown in Figure 7, with the
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Figure 6: Comparison of pose similarity ratios calculated in image space and PCA

space, for varying tilt angles.
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Figure 7: Ratio versus di�erent angular resolution across yaws at di�erent tilts.

r = 1 threshold marked as a dotted line. As expected, the ratios monotonically

decrease with angular separation, because it is easier to discriminate larger changes

in pose. For each tilt angle, 10� angular separation is not su�cient for some

yaw angles because the ratio exceeds 1. At 20�, however, the angular separation

is generally su�cient. The fact that the ratio is less than 1 at some yaws but

greater than 1 at others implies that di�erent angular resolution may be required

at di�erent poses. This requirement may arise because the problem is harder at

these poses, or because the noise in the acquisition system is higher at these poses.
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6 Conclusion

We have presented an analysis of face similarity distributions under varying head

pose for di�erent types of image transformation, with the aim of understanding

pose in similarity space. Orientation-selective Gabor �lters were found to detect

features for pose discrimination. Dimensionality reduction through PCA was found

to provide invariance to identity while accurately describing pose changes. PCA

also has the advantages of being understandable through visualisation, and more

computationally e�cient, since similarities are calculated in the low dimensional

space. The lowest angular separation at which pose di�erences can be feasibly

detected was also investigated. A greatest lower bound of approximately 20� was

determined, and the actual minimum resolution may be 10� or lower at some poses.

Overall, this work has shown that pose di�erences can be enhanced and iden-

tity similarities suppressed within a similarity-space framework using inexpensive

algorithms. Such �ndings should facilitate the development of real-time pose es-

timation systems. Some remaining issues are:(i) The optimal �lter orientation at

each pose is not necessarily unique. Indeed, Gabor �lters may not be the optimal

�lters for pose estimation. A more general approach could be taken by adapting

the �lter orientation locally within the facial images [2]. (ii) The bene�ts of pose-

selective �lters and PCA need to be combined. The main di�culty lies in creating

PCA bases from images that have been �ltered di�erently. (iii) PCA may not be

the best linear projection for removal of identity information. For instance, linear

discriminant analysis could be used to �nd the projection that maximises discrim-

ination between faces at di�erent poses. Such an approach has previously been

adopted to achieve invariance to illumination conditions and facial expression [5].
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