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Abstract

Support Vector Machines have shown great potential for learning clas-
sification functions that can be applied to object recognition. In this work,
we extend SVMs to model the appearance of human faces which undergo
nonlinear change across multiple views. The approach uses inherent factors
in the nature of the input images and the SVM classification algorithm to
perform both multi-view face detection and pose estimation.

1 Introduction

Support Vector Machines (SVMs) have recently been shown to be effective learning
mechanisms for object recognition. By defining hyperplanes in a high-dimensional fea-
ture space, SVMs build complex decision boundaries to learn the distribution of a given
data set. Their capabilities to learn a function approximation have been successfully ap-
plied in the field of handwritten digit recognition [5] and face detection [2]. The hand-
writing recognition task involved constrained two-dimensional variations in the input data
for each recognition class. Osuna’s face detection experiment limited the operational pa-
rameters of the SVM classifier to almost full-frontal views of human faces, with a small
degree of tolerance to variations in the pose of detected faces.

The 3D pose of a face greatly influences the 2D images captured by a camera. Three-
dimensional head rotations perpendicular to the camera view plane introduce complex
deformations into the appearance of the face. Changes in the lateral and vertical orien-
tation, i.e. yaw and tilt, of a person’s head reveal more details of the 3D structure of the
head, as other details are occluded. The rotation of the reflective planes of a face can
also cause large fluctuations in the local lighting conditions of captured images. Such
transformations are highly nonlinear but the distribution of faces across poses have been
shown to form smooth trajectories in low dimensional pose eigenspace [1]. In this paper,
we investigate both the problem of performing multi-view face detection and the task of
using Support Vector Machines to learn a model of the face pose distribution. In addition,
we extend SVMs to perform pose estimation by enriching support vectors with extra pose
information.
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2 Support Vector Machines

SVMs are based on a generic learning framework that have exhibited useful potentials
in resolving some computer vision problems [6, 5, 2, 3, 4]. Let us first outline the basic
concept of this approach to learning classification functions for object recognition.

2.1 Structural Risk Minimisation

Previous approaches to statistical learning have tended to be based on finding functions
to map vector-encoded data to their respective classes. The conventional minimisation of
the empirical risk over training data does not however imply good generalisation to novel
test data. Indeed, there could be a number of different functions which all give a good
approximation to the training data set. It is nevertheless difficult to determine a function
which best captures the true underlying structure of the data distribution. Structural Risk
Minimisation (SRM) aims to address this problem and provides a well defined quantitative
measure for the capacity of a learned function to generalise over unknown test data. Due
to its relative simplicity, Vapnik-Chervonenkis (VC) dimension [6] in particular has been
adopted as one of the more popular measures for such a capacity. By choosing a function
with a low VC dimension and minimising its empirical error to a training data set, SRM
can offer a guaranteed minimal bound on the test error.

Perhaps the notion of VC dimension can be more clearly illustrated through hyper-
plane classifiers. Given a data set fxi; yig; i = 1; :::; l; x 2 R

N
; y 2 f+1;�1g, a

hyperplane such as
(w � x) + b = 0; w 2 R

N
; b 2 R; (1)

can be oriented across the input space to perform a binary classification task, minimising
the empirical risk of a hyperplane decision function f(x) = sign((w � x) + b). This
is achieved by changing the normal vector w, also known as the weight vector. There
is usually a margin on either side of the hyperplane between the two classes. The VC
dimension of the decision function decreases, and therefore improves, with an increasing
margin. To obtain a function with the smallest VC capacity and the optimal hyperplane,
one has to maximise the margin:

Maximise W (�) =
Pl

i=1 �i �
1

2

Pl

i;j=1 �i�jyiyj(xi � xj) (2)

Subject to �i � 0; i = 1; :::; l and
Pl

i=1 �iyi = 0 (3)

The optimal hyperplane is mainly defined by the weight vector w which consists of
all the data elements with non-zero Lagrange multipliers (�i) in Functional (2), those
elements lie on the margins of the hyperplane. They therefore define both the hyperplane
and the boundaries of the two classes. The decision function of the optimal hyperplane is
thus:

f(x) = sign

 
lX

i=1

yi�i(x � xi) + b

!
(4)

2.2 Support Vector Machines Using Kernel Functions

A hyperplane classification function attempts to fit an optimal hyperplane between two
classes in a training data set, which will inevitably fail in cases where the two classes are
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not linearly separable in the input space. Therefore, a high dimensional mapping

� : R
N 7! F

is used to cater for nonlinear cases. As both the objective function and the decision func-
tion is expressed in terms of dot products of data vectors x, the potentially computa-
tional intensive mapping �(:) does not need to be explicitly evaluated. A kernel function,
k(x; z), satisfying Mercer’s condition can be used as a substitute for (�(x) � �(z)) which
replaces (x � z) [6].

For noisy data sets where there is a large overlap between data classes, error variables
"i > 0 are introduced to allow the output of the outliers to be locally corrected, constrain-
ing the range of the Lagrange multipliers �i from 0 to C. C is a constant which acts as
a penalty function, preventing outliers from affecting the optimal hyperplane. Therefore,
the nonlinear objective function is

Maximise W (�) =
Pl

i=1 �i �
1

2

Pl

i;j=1 �i�jyiyj(k(xi; xj)) (5)

Subject to 0 � �i � C; i = 1; :::; l and
Pl

i=1 �iyi = 0 (6)

with corresponding decision function given by

f(x) = sign

 
lX

i=1

yi�i k(x; xi) + b

!
(7)

There are a number of kernel functions which have been found to provide good gener-
alisation capabilities, e.g. polynomials. Here we explore the use of a Gaussian kernel
function (analogous to RBF networks) as follows:

Gaussian Kernel k(x; y) = exp

�
jx � yj2

2�2

�
(8)

3 The Nature of Face Pose Distribution

Detecting human faces across the view sphere involves the recognition of a whole spec-
trum of very different face appearances. The pose of the head reveals some details about
the 3-dimensional structure of the face while masking others. Head rotations introduce
nonlinear deformations in captured face images while the rotation can occur in two axes
outside the view plane of the camera. The face’s main direction of light reflection also
changes and affects the illumination conditions of the captured image. Ambient day-time
lighting conditions in normal office environments are hardly symmetric for the top and
bottom hemispheres of the face, while the bias towards the upper hemisphere is exacer-
bated by ceiling-fixed light sources during the night.

The view sphere provides a framework for analysing face pose distribution and for
training support vector machines over the infinite number of possible pose angles of hu-
man faces. For collecting training data, a 3D iso-tracking machine can be used to capture
human faces at preset yaw (lateral) and tilt (vertical) angles. The tracking mechanism can
also provide semi-automatic segmentation facilities for cropping the face. The result is an
array of accurately calibrated and cropped images as shown in Figure 1.
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Figure 1: A sample view sphere image-array with calibrated elements varying horizon-
tally from 0� to 180� yaw and vertically from 60� to 120� tilt.

Figure 2: Face rotation in depth forms a smooth trajectory in a 3D pose eigenspace.

Figure 3: From left to right: The graphs show the PES trajectories for a set of 10 people
rotating their heads from profile to profile, at 60� tilt, 90� tilt and 120� tilt respectively.

A face rotating across views forms a smooth trajectory as can be seen in Figure 2.
In fact, faces form continuous manifolds across the view sphere in a Pose Eigen-Space
(PES). It is plausible to suggest that head rotations describe a continuous function in PES.
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This can be seen more clearly in Figure 3. It can also be observed in Figure 3 that an
emerging pattern exists for the vertical positioning (from the selected view angle) of the
groups of trajectories. Considering that the two images on either sides are made up of
the extreme tilt angles of the view sphere, the middle image indeed corresponds to the
middle tilt band. The volume enclosed by the entire view sphere is more visible when the
nodes of the sphere are plotted individually as in Figure 4. The distribution appears to be
a convex hull.

Figure 4: Counter-clockwise from the upper right image: Side, front and top views of the
distribution of the face sphere, with the trajectory of the mean yaw clusters. The lower
right image uses a special angle to show the direction of biggest variance of the yaw
clusters (by the tangential lines) across the mean yaw positions.

Given better correlation of the lateral bands of the face sphere, the whole distribution
can be grouped into 19 different clusters according to their yaw orientation (0� to 180�).
We observed that the trajectory of the mean positions of the clusters, which are indeed
their centroids in PES, structures the distribution across a main axis of variation. This
notion is further supported by the tangentiality of the main axes of local variation inside
the clusters across the mean trajectory as shown in the lower right picture in Figure 4.
The above observations strongly suggest that the convex hull is more akin to a “tube”, a
volume function, through which data elements “flow” from one end to the other as their
yaw angles increase from 0� to 180�.
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4 Learning a Face Model across Views using SVMs

Support Vector Machines perform automatic feature extraction and enable the construc-
tion of complex nonlinear decision boundaries for learning the distribution of a given data
set. The learning process and the number of support vectors for a data set are determined
in a principled way by only a few customisable parameters which define the character-
istics of the learned function. In our case, the parameters are limited to two: C, the
penalty value for the Lagrange multipliers to distinguish between noisy data and, � for
determining the effective range of Gaussian Support Vectors. Effective values for the two
parameters have already been reported for frontal view face detection [2].

We adopt a semi-iterative approach for obtaining good examples of negative training
data. The ideal negative images chosen by SVM training algorithms for negative sup-
port vectors have been reported to be naturally occurring non-face patterns that possess
a strong degree of similarity to a human face [2]. Given the highly complex distribution
of the view sphere described in the previous section, it is crucial to find good examples
of these to allow the training algorithm to construct accurate decision boundaries. It must
be stressed that training is performed on masked vectors consisting of normalised pixel
intensity values of face and non-face images of some 300 dimensions. PCA was only
used for investigating the nature of the face-pose distribution.

We extended a training process for frontal-view SVM face detection to use the im-
ages of the view sphere. The process uses an iterative refinement methodology to find
important negative pattern examples in a database of big scenery pictures. This process
is illustrated in Figure 5. Although the resulting SVM did not show any potential for
robustly detecting faces across views, its training process yielded a good database of neg-
ative examples for training such a system. This shows that a single Support Vector Ma-
chine cannot learn a unique model of the human face across all views. A multi-view face
model must be broken down into component models which form better localised clusters
in the distribution and therefore is easier for each SVM to learn a view-based subspace.

Set of Positive 
Face Images

Initial Set of 
Negative Random-
Noise Images

SMO Training
Process

Positive Data

Negative Data

False Positives

Database of various sceneries
for multi-resolution subscanning 

Added to the set of negative images

Figure 5: Boot-strapping technique for obtaining negative support vectors.

Based on the nature of the face distribution in PES (Figure 4), the view sphere is
divided into smaller, more localised yaw segments as in Table 1. The observed asymmetry
of the view sphere distribution and the greater complexity of the left portion are reflected
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into the selection of smaller segments for that region.

Segment 1 2 3 4 5
Yaw angles 0�-10� 20�-40� 50�-80� 90�-130� 140�-180�

No. of Elems 140 210 280 350 350
No. of Pos SVs 107 139 176 190 203

Table 1: The division of the view sphere for learning multi-view SVMs.

All the component SVMs were trained on the same global negative data set. The size
of the negative training data is about 6,000 images and of those, the SVMs selected 1,666
as negative support vectors, with only 36 shared between two or more component SVMs.
This shows that the negative support vectors are well localised to the sub-space of each
yaw segment.

The modelling capabilities of the component SVMs and their tendency to overflow to
the neighbouring segments corroborated with the previous observations of the structure of
the distribution of the view sphere in pose eigenspace. In general, the component SVMs
could detect faces at yaw angles of 10� on either side of their training ranges. In some
cases, the overlap was as much as 30�. The observed phenomenon also shows that support
vectors are localised in a composite distribution such as the view sphere. They can be used
to detect either the whole distribution or smaller segments in that distribution.

For face detection across the view sphere, the component SVMs can be arranged into
a linear array to form a composite SVM classifier as follows:

Composite SVM(x) = sign

 
5X

i=1

SVM(i; x) + 1

!
(9)

where SVM(i; x) is the decision function f(x) for SVM number i.
The multi-view face model can also be applied to pose estimation across the view

sphere. Figure 4 shows the correspondence of the yaw angles to the data elements’ po-
sition along the mean trajectory of the yaw clusters. A similar correspondence of the tilt
angles to their “vertical position” from the selected viewing angles, with the variation
lying approximately perpendicular to the mean yaw trajectory, can also be observed in
Figure 3.

Support vectors in fact define the boundaries of respective classes and should there-
fore lie on the “walls” of the “tube”. Knowing the correspondence between their position
in input space to their pose orientation, nearest neighbour matching should enable esti-
mation of the pose for each classified image. The pose estimation is retrieved at no extra
computational cost to the calculation of the decision function and is illustrated in Figure 6.

5 Experiments

We have applied the multi-view SVM-based face model to perform both multi-view face
detection and pose estimation across views. First, we show the performance of the multi-
view face detection system on training data given in Table 2.
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Figure 6: Top view of the face manifold across the pose eigenspace with pan information
shown next to each support vector (dark circles). The pose orientation classification image
(white circle) is retrieved from that of the closest support vector.

Training subsets 1 2 3 4 5
Full detection 100% 97.7% 94.7% 92.5% 82.7%
Multi-scaling 100% 100% 100% 97.0% 85.7%
Training subsets 6 7 8 9 10
Full detection 88.7% 94.7% 100% 99.2% 97.0%
Multi-scaling 99.2% 97.7% 100% 100% 98.4%

Table 2: Face detection on training data across the view sphere, grouped by human sub-
ject.

The quality of alignment of the input images played an important role in the learning
process. Most of the misclassified elements of the view sphere were correctly recognised
after multi-scaling the images. Multi-scaling is performed on the input images with a bias
in each of the four directions to correct misalignments of the face images.

It is worth pointing out that our previous work reported that the variation of the view
sphere distribution along the second principle component axis was highly related to the
level of local lighting in the image [1]. Using an overhead light source yields such an
effect on the captured images. The lighting conditions must therefore help in the deter-
mination of the tilt orientation of the faces. However, it makes down-facing poses very
poorly illuminated and therefore, very difficult to detect by the system as shown in Fig-
ure 7.

The Multi-View SVM face detector and pose estimator was tested over a number of
test sequences of human subjects freely turning their heads around, with the ground-truths
of the pose information measured for comparison. For test sequences A-D, the system has
been coupled to the iso-tracker to test its classification and pose-estimation accuracy. In
sequence E, the system is used to detect, track and estimate the pose of the human subject
without the iso-tracker. Experiments on three subjects are given here for illustration: the
subject with the worst detection results during training (test sequences A, B and E) and
two novel subjects unknown to the training process (test sequences C and D). The latter
were selected to test the generalisation capabilities of the system.
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Figure 7: Misclassification in lower hemisphere of the view sphere (shown by -1,-1).
Image multi-scaling is shown with white rectangles.

Figure 8: Selected frames from an example sequence (E) of detected and tracked moving
faces. The graphs also show the estimated face pose (in grey) over time and their cor-
responding ground-truths (in black), measured by electro-magnetic sensors. The vertical
lines indicate moments in time where no face was detected.

6 Discussion

In this work, we have shown that a well structured distribution of a face training image
data set allows a collection of view-based component Support Vector Machines to be
locally trained on segments of that distribution. The outputs of the component Support
Vector Machines can then be integrated into a composite SVM function, which effectively
gives a generic face model across the entire view sphere. The model enables multi-view
face detection across the view sphere in our case without any gap in the detection of faces
at the “seams” of the segments. The technique has also been extended to use the inherent
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Test Sequence Detection Rate Mean Yaw Error Mean Tilt Error
A 100% 11.07� 6.62�

B 84.9% 11.467� 6.32�

C 82.9% 13.57� 7.29�

D 99.6% 8.73� 8.67�

E 99.2% 8.90� 8.21�

Table 3: Test results of the multi-view face detector and pose estimator from a total of
over 1000 images from a set of test sequences.

structure of the data to perform pose estimation at no extra computational cost to the
detection process. In particular, support vectors have been tagged with pose information
to allow the retrieval of pose orientation by nearest neighbour matching to the support
vectors. The results show that the support vectors obtained from the view sphere make
good prototypes for pose estimation by nearest neighbour matching.

The accuracy of the face alignment and orientation calibration of some of the training
images were not perfect. A better training set could have better defined the decision
surface and allow nearest neighbour matching to yield more accurate results. We believe
that pose estimation can still be further refined by using high-dimensional mapping and
the weighted decision function of the SVMs to perform nonlinear pose estimation.
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