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Abstract

We address the problem of automatically placing landmarks across an im-
age sequence to define correspondences between frames. The marked up se-
quence is then used to build a statistical model of the appearance of the object
within the sequence. We locate the most salient object features from within
the first frame and attempt to track them throughout the sequence. Salient
features are those which have a low probability of being mis-classified as any
other feature, and are therefore more likely to be robustly tracked through-
out the sequence. The method automatically builds statistical models of the
objects shape and the salient features appearance as the sequence is tracked.
These models are used in subsequent frames to further improve the proba-
bility of finding accurate matches. Results are shown for several face image
sequences. The quality of the model is comparable with that generated from
hand labelled images.

1 Introduction

Statistical models of shape and appearance have proved powerful tools for interpreting
images, particularly when combined with algorithms to match the models to new images
rapidly [5, 4, 8]. In order to construct such models we require sets of labelled training
images. The labels consist of landmark points defining the correspondences between
similar structures in each image across the set.

The most time consuming and scientifically unsatisfactory part of building the models
is the labeling of the training images. Manually placing hundreds of points on every image
is both tedious and error prone. To reduce the burden, semi-automatic systems have been
developed. In these a model is built from the current set of examples (possibly with extra
artificial modes included in the early stages) and used to search the next image. The user
can edit the result where necessary, then add the example to the training set. Though this
can considerably reduce the time and effort required, labelling large sets of images is still
difficult.

We present a method which, given a sequence of an object and its outline in the first
frame, automatically returns a set of correspondences across the entire sequence. We take
advantage of the fact that it is easier to track correspondences across a sequence than find
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them between two arbitrary images from a training set. The found correspondences can
then be used to build an appearance model of the object.

The local image structure at each image point is described by vectors of Gaussian
partial derivatives (or feature vectors) computed at a range of scales. We can calculate
the spatial positions and scales of the salient features within the first frame by defining
salient feature vectors [14, 13] to be the ones which lie in the low density regions of
the distribution of all feature vectors. Salient features have a low probability of being
mistaken for any other feature within the object. They therefore have a low probability of
generating false positive matches when searched for in subsequent frames.

As the sequence is searched, we build statistical models of each salient feature. These
models enable us to use all the information gained from searching previous frames to
help find the correct matches in subsequent frames. We also build a model of the rela-
tive positions of each feature and ensure that only sensible configurations of features are
selected.

In the following we briefly review how to construct appearance models. We describe
how salient features are located in the first frame, and how they are used to derive corre-
spondences across an image sequence. Finally we show some examples of automatically
built appearance models and compare them with appearance models built from manually
labelled training data.

2 Background

2.1 Saliency and Automatic Landmarking

Many authors have shown that using the saliency of image features can improve the ro-
bustness in object recognition algorithms [3, 12], but this typically been applied to finding
salient segments on an object boundary.

Approaches to automatic landmark placement in 2D have assumed that contours have
already been segmented from the training sets [7, 1]. This is a process in its self can time
consuming and involve human intervention.

Baumberg and Hogg [1] describe a system which generates landmarks automatically
for outlines of walking people. While this process is satisfactory for silhouettes of pedes-
trians, it is unlikely that it will be generally successful. The authors went on to describe
how the position of the landmarks can be iteratively updated in order to generate improved
shape models generated from the landmarks [2].

Many people have used jets of Gabor Wavelets or Gaussian Partial Derivative to de-
scribe and locate features in new image examples [9, 10]. Typically the location of the
features modelled are selected by hand, choosing for example, heavily textured areas. We
believe that there is an optimum set of these features which best determine the object, and
attempting to select them manually risks compromising system performance.

2.2 Appearance Models

An appearance model can represent both the shape and texture variability seen in a train-
ing set. The training set consists of labelled images, where key landmark points are
marked on each example object.
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Given such a set we can generate a statistical model of shape variation by applying
Principal Component Analysis (PCA) to the set of vectors describing the shapes in the
training set (see [5] for details). The labelled points, x, on a single object describe the
shape of that object. Any example can then be approximated using:

x = �x+Psbs (1)

where �x is the mean shape vector,Ps is a set of orthogonal modes of shape variation
and bs is a vector of shape parameters.

To build a statistical model of the grey-level appearance we warp each example image
so that its control points match the mean shape (using a triangulation algorithm). Figure
1 shows three examples of labelled faces. We then sample the intensity information from
the shape-normalised image over the region covered by the mean shape. To minimise the
effect of global lighting variation, we normalise the resulting samples.

Figure 1: Examples of faces labelled with consistent landmarks

By applying PCA to the normalised data we obtain a linear model:

g = �g +Pgbg (2)

where �g is the mean normalised grey-level vector, Pg is a set of orthogonal modes of
intensity variation and bg is a set of grey-level parameters.

The shape and texture are correlated. By further analysis [4] we can derive a joint
model of shape and texture:

x = �x+Qxc (3)

y = �y +Qyc (4)

whereQx andQy represent modes of shape and texture variation, and c is a vector of
appearance model parameters.

An example image can be synthesized for a given c by generating the shape-free grey-
level image from the vector g and warping it using the control points described by x.

3 Automatically Building Appearance Models

To build an Appearance Model it is necessary to calculate a dense correspondence be-
tween all frames in the training set. This is typically achieved by placing consistent land-
marks on all training frames and using a triangulation algorithm to approximate the dense
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correspondence. We have attempted to find a consistent set of landmarks automatically by
selecting salient features in the first image in the sequence. These are the features which
have the lowest probability of being mistaken with any other features in that image. By
searching for these features in subsequent images we minimize the probability of false
positives. Robustness can further be improved by applying shape constraints learnt from
previous frames to searches in subsequent frames.

We begin by explaining how salient features are chosen from the initial frame.

3.1 Locating salient features in the first image

The aim is to locate salient features, those which are most likely to be relocated correctly
in a subsequent frame. Given only one example of the object, the best we can do is to
attempt to find those features which are significantly different to all other features in the
object. Ideally, these features would occur exactly once in each example of the object.

For every pixel within the object boundary we construct several feature vectors, each
of which describes a feature centered on the pixel at a range of scales. In the following the
feature vectors used were the first and second order normalised Gaussian partial deriva-
tives, giving a five dimensional feature vector for each scale considered. Higher orders
could be used depending on the computational power available. The full set of vectors
describing all object features (one per image pixel), forms a multi-variate distribution in
a feature space. By modeling the density in feature space we can estimate how likely
a given feature is to be confused with other features. Salient features lie in low density
areas of feature space.

In the rest of this section we describe how we modeled the density of feature space and
how this can be used to select salient features.See [14, 13] for a more detailed description.

3.1.1 Modeling the Density of Feature Space

We estimate the local density p̂ at point x in a feature space by summing the contribution
from n Gaussian kernels, one centered on each sample, xi, in the distribution.

p̂(x) =
1

n

nX
i=1

G(x� xi;�) (5)

where G(x;�) gives the probability of x being part of the normalised multi-variant
Gaussian distribution, with covariance � and a mean of 0, � = hS where S is the
covariance of the entire distribution and h is a scaling factor.

This method of modeling the density of feature space gives very good results but at a
cost of a complexity of n2. An approximation to this method is to model the distribution
with less than n Gaussian Kernels [14].

3.1.2 Selecting Salient Features

The density estimate for each feature vector v(�) corresponds directly to the saliency of
the feature at scale �. The lower the density, the more salient the point.

A saliency image can be constructed for each scale analysed by setting each pixel
to the probability density at the corresponding feature vector at that scale. This forms a
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saliency image stack. The positions and scales of the most salient features are then found
by locating the lowest troughs in the saliency images. To ensure that the features selected
are distributed evenly across the object, the following algorithm is used:

REPEAT
Select the next lowest trough in the saliency image stack
IF trough is more than 3� pixel’s from any previously selected trough

Mark trough as a representing a salient feature
ELSE

Discard trough
ENDIF

UNTIL no more trough’s

Figure 2 shows a saliency image stack calculated at 3 scales from an image of a face.
The features selected are shown on the original image, the circles around each feature
indicate the scale of the features (i.e. the region filtered in order to construct the feature
vector).

The result of this analysis is n salient features which are described by v
1i, si and x

1i,
where vji is the feature vector of salient feature i in frame j, si is the scale at which
feature i was found to be salient, and xji = (xji; yji) are the x and y coordinates of
feature i in frame j respectively.

3.2 Locating the features in the jth frame

When locating the features in the jth frame we make the following two assumptions:

� The features will not move more than a given number, r, pixels between frames.

� The scale of the object and therefore features will not change significantly.

These assumptions help constrain the search and reduce processing time. Only �r
2

candidate pixels in each frame need to be considered in order to locate the best match for
one particular feature. A candidate pixel has an associated feature vector, v. We assume
the quality of match to the ith feature model using Mi(v);

Mi(v) = (v � �vi)
T
S
�1(v � �vi) (6)

where �v is the mean of the matches for the ith feature, �vi = 1

j�1

P
j�1

k=1
vki, and

S =

8<
:

Csi
if j = 2

1

j
(
P

j�1

k=1
(vki� �vi)

2 + �rI) if j > 2

C� is the covariance matrix of all the features at scale � within the object boundary
from frame one and �rI is a regularising term to avoid singular matrix inversion. The
smaller Mi(v), the better the match. Mi(v) is linearly related to the log of the probability
that v comes from the distribution of feature model i.
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Figure 2: Images (b), (c) and (d) are saliency images extracted from image (a) at scales
6, 7 and 8 standard deviations respectively. The circles on image (a) show the locations
of the salient features selected. The size of the circles represent the image region that the
salient feature represents (or the scale).

By calculating Mi(v) for all candidates for a particular feature, i, we can form a
similarity image. This is done by plotting Mi(v) in the image domain. We locate the
m best matches for the feature by locating the m lowest trough’s in the similarity image.
Figure 3 shows an example of this.

The shape of an object is represented by n salient features. We have selected m

possible candidate matches for each salient feature. By selecting one candidate match for
each salient feature we form an object hypothesis. Generating all possible combinations
would result in m

n object hypotheses. In order to reduce the number of hypotheses,
candidates which correspond to the largest similarity values, Mi(v), can be discarded
(i.e. remove the most improbable matches). The number of matches discarded depends
on the computational power available.

Each hypothesis is given a probability of being correct, based on the evidence obtained
from previous frames. We define the probability of a hypothesis being correct to be equal
to the probability of all features being correct together with the probability of the shape
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(a) (b) (c)

Figure 3: Calculating a feature match in subsequent frames. (c) is the similarity image
obtained whilst searching for the feature in (a) in the frame shown in (b). The trough’s in
(c) represent the matches, these are highlighted in (b)

formed by the salient features being correct. The shape formed by the n salient features,
for a particular frame, j, is described by a 2n element shape vector, xj , where:

xj = (xj1; :::::; xjn; yj1; :::::; yjn)
T (7)

The quality of fit of a shape vector, xj , in frame, j, is given by:

M(xj) = (xj � �x)TH�1(xj � �x) (8)

where �x and H are the mean and covariance matrix of shape vectors from frame 1 to
j � 1 after they have been aligned using Procustes Analysis [6]. If j = 2 then H = I�

where I is a (2nx2n) identity matrix and � is an estimate of the variance of the features
between frames in pixel’s. M(xj) is also linearly related to the log probability that xj is
drawn from the distribution shape vectors from frames 1 to j � 1.

We assume features can be treated as independent of one another and the global shape.
A measure of the quality of a particular hypothesis, M(hk), is thus given by:

M(hk) = M(xhk) +

nX
i=1

Mi(vhki) (9)

where xhk is the shape vector for hypothesis hk and vhki is the feature vector that
hypothesishk has selected to describe feature i. We select the hypothesis with the smallest
M(hk) as the most likely solution.

4 Results

The automatic method gives qualitatively good results if the sequence is correctly tracked.
Figure 5(a) illustrates the modes of variation for an automatically trained model. As a
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(a) (b)

Figure 4: Landmarks chosen manually (a) and automatically (b).

comparison we also build two other models. The first trained using n hand placed land-
marks, the second trained using only 4 landmarks placed on each corner of the smallest
rectangle which could contain the face in each frame, essentially an eigenface [11]. This
second model was used to examine the affect on the texture error if the texture and shape
information where not modeled separately (no normalization of shape). Figure 4 shows
the positions for the landmarks for the hand placed model (a) and the automatic model (b).
Figure 5(b) shows the modes for the manually trained model. They appear very similar to
those for the automatically trained model.

It is difficult to assess the results quantitatively without considering the application
to which the model will be put. For effective coding (compression), we require that
truncating the number of models modes has a minimal effect on the reconstruction error.
We can thus compare models by how the reconstruction error varies with the number of
modes.

Figure 6 shows how the reconstruction texture error, (a), and the shape error, (b),
increase as the model modes decrease. The graphs show that both the texture error and
shape error are reduced by training the model automatically. The automatic method thus
leads to a more compact model.

5 Discussion

We have demonstrated one possible approach to automatically training appearance mod-
els. The system both locates the most suitable features to use as model points, and tracks
their correspondence across frames. We have shown that the method can be used to auto-
matically make models of the human face for image sequences.

However, if features move and change shape significantly between frames, false cor-
respondences can result. Also in long sequences, features which were salient in the first
frame are not necessarily still salient in the 50th frame. Walker et al [15] proposed a
method of calculating the locations of salient features over a number of frames given an
approximate correspondence. This idea could be incorporated into our scheme. When
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(a) (b)

Figure 5: Models of variation for an automatically trained (a) and manually trained (b)
model.

searching frame j, instead of locating features which were salient in frame 1, we could
locate features which were salient in frames j � 1 to, say, j � 5. However, this would
require additional work (eg using interpolation between points) to compute correspon-
dences across the entire sequence.

The results presented in this paper have used a relatively small number of landmarks
(25). We have observed that the coarse scale features are, in general, much more reliable
than the fine scale features. We would like to extend this scheme to a find a greater num-
ber of correspondences by adopting a multiscale approach. Coarse scale salient features
would be found first, then the resulting coarse scale correspondence could be used to con-
strain a search for finer scale salient features. This would lead to a more accurate overall
correspondence.

Our method would be well suited to in the animation industry for building models of
faces or other deformable objects with the intention of using the models to produce photo
realistic animations.
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