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Abstract

This paper provides two algorithms; one for adding eigenspaces, another
for subtracting them, thus allowing for incremental updating and downdat-
ing of data models. Importantly, and unlike previous work, we keep an ac-
curate track of the mean of the data, which allows our methods to be used in
classification applications. The result of adding eigenspaces, each made from
a set of data, is an approximation to that which would obtain were the sets
of data taken together. Subtracting eigenspaces yields a result approximating
that which would obtain were a subset of data used. Using our algorithms it is
possible to perform “arithmetic” on eigenspaces without reference to the orig-
inal data. We illustrate the use of our algorithms in three generic applications,
including the dynamic construction of Gaussian mixture models.

1 Introduction

This subject of this paper is incremental eigenanalysis: we provide an algorithm for includ-
ing new data into an eigenspace, and another for removing data. An eigenspace comprises:
the number of data points, their mean, the eigenvectors, and the eigenvalues that result
from the eigenvalue decomposition (EVD) of the data covariance matrix. Typically the
eigenspace is deflated, which is to say that only “significant” eigenvectors and eigenval-
ues are retained in the eigenspace. The inclusion of new data is sometimes called updating,
while the removal of data is sometimes called downdating. Rather than use data directly,
we use eigenspace representations of the data, hence we add or subtract eigenspaces. Our
methods are presented in Section 2.

We must make clear the difference between batch and incremental methods for com-
puting eigenspace models. A batch method computes an eigenmodel using all observa-
tions simultaneously. An incremental method computes an eigenspace model by succes-
sively updating an earlier model as new observations become available. In either case, the
observations used to construct the eigenspace model are the training observations; that is,
they are assumed to be instances from some class. This model may then used to decide
whether further observations belong to the class.

Incremental eigenanalysis has been studied previously [1, 2, 3, 4, 7, 13], but surpris-
ingly these authors either have ignored the fact that a change in data changes the mean,
or else have handled it in an ad hoc way. Only our previous work allows for a change
of mean [9], where we allowed for the inclusion of only a single new datum. In contrast,
our algorithms here handle block update and downdate, so many datum can be included
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or removed in a single step. They explicitly allow the mean to vary in a principled and
accurate manner, and this is important. Consider, for example, that functions such as the
Mahalanobis distance, often used in classification applications, cannot be computed with-
out the mean; previous solutions cannot be used in this case.

Applications of incremental methods are wide ranging both within computer vision
and beyond. Focusing on computer vision, applications include: face recognition [12],
modelling variances in geometry [6], and the estimation of motion parameters [4].

Our motivations for this work arose from several sources, the construction of clas-
sification models for many images — too many to fit all of them into memory at once
— for example. Intuition, confirmed by experiment, suggests it is better to construct the
eigenspace model from all the images rather than a subset of them as batch methods would
allow; hence the need for an incremental method (see Section 3). An example is a database
of photographs for a security application in which images need to be added and deleted
each year, yet not all images can be kept in memory at once. Our methods allow the database
to be updated and downdated on a year by year basis without recomputing the eigenmodel
ab initio. (In any case, there may be so many images that batch methods cannot be used
— incremental methods are then necessary.) An example security application appears in
Section 3.

We are also interested in constructing dynamic Gaussian-mixture-models (GMMs),
that is being able to add and subtract GMMs. For this, the ability to keep track of the
mean while adding (or subtracting) eigenspaces is essential. A full discussion of the is-
sues involved are beyond the scope of the paper, and are the subject of future work, but
we present initial results (see Section 3) because of the potential of dynamic GMMs. For
example, the mixture model used by Cootes and Taylor [5] can be brought into a dynamic
learning framework, and since our GMMs rely on a hierarchy of subspaces, so too can
work such as that of Heap and Hogg [11].

2 Adding and subtracting eigenspaces

We now state the problems which are our subject.
LetX = [x1; : : : xN ] be a collection ofN data points, each n dimensional. The eigen-

model of these data is


(X) = (�(X); U(X)np;�(X)p; N(X)) (1)

in which: �(X) is their mean; U(X)np is a collection of p eigenvectors, each a column in
an n�pmatrix; �(X)p is a collection of p eigenvalues, one per eigenvector, and N is the
number of data points. The subscripts on each element identify its size, where necessary.

Typically p � min(n;N) is the rank of the covariance matrix of X , though this de-
pends on details of how the model is deflated (see our previous work [9] for a discussion).
We call p the dimension of the eigenspace. We have thatUTU = I , but usuallyUUT

6= I ,
so the eigenvectors support a subspace of dimension p in a space of dimension n. The
eigenvalues measure the standard deviation of the data over each of the eigenvectors, un-
der the assumption that the data are Gaussian distributed. Hence 
(X) may be regarded
as representing a multidimensional Gaussian distribution over a hyperplane,of dimension
p, in some embedding space, of dimension n. Contours of equal likelihood generate hy-
perellipses of dimension p.
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Another collection of observations Y = [y1; : : : yM ] has an eigenmodel


(Y ) = (�(Y ); U(Y )nq ;�(Y )q ; N(Y )) (2)

This collection is usually distinct fromX , but such distinction is not a requirement. Notice
that q eigenvectors and eigenvalues are kept in this model, and in general q 6= p even if
Y = X : deflation may occur in different ways.

The problem for addition is to compute the eigenmodel for the pair of collectionsZ =

[X;Y ]


(Z) = (�(Z); U(Z)nr ;�(Z)r; N(Z)) (3)

= 
(X)�
(Y ) (4)

with reference to 
(X) and 
(Y ) only; that is, define the algorithm for the � operator.
We assume the original data are not available. In general, the number of eigenvectors and
eigenvalues kept, r, differs from both p and q. This implies that addition must account for
a possible change in dimension of the eigenspace.

The problem for subtraction is to compute 
(X)


(X) = 
(Z)	
(Y ) (5)

which is to remove the observations in Y from the eigenmodel in Z. As in the case of
addition, a possible change in the dimension of the eigenspace must be accounted for.

This paper has space only to present the solutions to these problems, and derivations
are available elsewhere [10].

2.1 Addition

Incremental computation of N(Z) and �(Z) is straight forward:

N(Z) = N(X) +N(Y ) (6)

�(Z) = (N(X)�(X) +N(Y )�(Y ))=N(Z) (7)

Computing eigenvectors and eigenvalues depends upon properties of the subspaces that
the eigenvectors U(X), U(Y ), and U(Z) support; properties we describe next.

SinceU(Z) must support all data in both collections, X and Y , both U(X) and U(Y )
must be subspaces of U(Z). Generally, we might expect that these subspaces “intersect”
in the sense that U(X)

TU(Y ) 6= 0. The null space of each of U(X) and U(Y ) may con-
tain some component of the other, that is to say H = U(Y )�U(X)(U(X)

TU(Y )) 6= 0.
Both of these conditions are illustrated in Figure 1. Furthermore, even if U(X) and U(Y )
are each a basis for the same subspace, U(Z) could be of larger dimension. This is be-
cause some component, h say, of the vector joining the means, �(X) � �(Y ) may be in
the null space of both subspaces, simultaneously. For example �(X), U(X) and �(Y ),
U(Y ) define a pair of planes parallel to the xy-plane, but separated in the z direction, as
in Figure 1.

Putting (temporarily) to one side issues relating to changes in dimension, adding data
acts to rotate the eigenvectors and scale the eigenvalues. Hence, the new eigenvectors
must be a linear combination of the old. When adding, we deal with a change in dimen-
sion by constructing a basis sufficient to span U(Z), for which we use U(X), and a basis,
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Subspaces (y1,y2) and (v1,v2) are embedded in (e1,e2,e3).
They are parallel subspaces, the line joining them is in the null space of both.

This line counts as an extra dimension when adding eigenspaces.

y1 y2

v1 v2

Subspaces (x1,x2) and (u1,u2) are embedded in (e1,e2,e3)

Each component is embedded in (e1,e2,e3).

Subspace (u1,u2) has components in (x1,x2), marked by dashed lines.
It also has components in the null space of (x1,x2), marked by dotted lines.

x1 x2

u1

u2

e1 e2

e3

Figure 1: An illustration of relationships between subspaces embedded in a larger space.

� that spans [H;h], which is in the null space of U(X) with respect to U(Z). We have
U(Z) = [U(X); �]R where R is an orthonormal (rotation) matrix to be found by solving
the following eigenproblem:

N(X)

N(Z)

�
�(X)pp 0pt

0tp 0tt

�
+

N(Y )

N(Z)

�
Gpq�(Y )qqG

T
pq Gpq�(Y )qq�

T
tq

�tq�(Y )qqG
T
pq �tq�(Y )qq�

T
tq

�
+

N(X)N(Y )

N(Z)2

�
gpg

T
p gp

T
t

tg
T
p t

T
t

�
= Rss�ssR

T
ss (8)

in which

gp = U(X)
T
(�(X)� �(Y )) (9)

Gpq = U(X)
TU(Y ) (10)

Hnq = [U(Y )� U(X)Gpq ] (11)

hn = (�(X)� �(Y ))� U(X)gp (12)

�nt = Orthobasis(�[Hnq ; hn]) (13)

�tq = �TntU(Y )nq (14)

t = �T (�(X)� �(Y )) (15)

� is an operation that removes very small column vectors from the matrix, and Orthobasis

computes a set of mutually orthogonal, unit vectors that support its argument; typically
Gramm-Schmidt orthogonalisation is used to compute significant support vectors, � from
�[H;h]; these are “outside” the eigenmodel
(X). [8]. Note that while �T � = I , ��T 6=
I . Also, G is the projection of the 
(Y ) eigenspace onto
(X) (theU vectors), while � is
the projection of 
(Y ) onto the complementary space to 
(X) (the � vectors). This com-
plementary space must be computed to compute the new eigenspace 
(Z), which argues
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in favour of adding and subtracting eigenspace, rather than direct updating or downdating
of data blocks.

Given the above decomposition, we can complete our computation of 
(Z):

�(Z)s = diag(�ss) (16)

Uns(Z) = [Unp�nt]Rss (17)

The eigenmodel can then be deflated, if desired, to dimension r � s.
Each matrix in the above eigendecomposition is of size s = p + t � p + q + 1 �

min(n;M +N). Thus we have eliminated the need for the original covariance matrices.
Note this also reduces the size of the central matrix on the left hand side. This is of crucial
computational importance because it makes the eigenproblem tractable for problems in
which n is very large, such as when each datum is an image.

2.2 Subtraction

The algorithm for subtraction is very similar to that for addition. First compute the number
of data, and their mean:

N(X) = N(Z)�N(Y ) (18)

�(X) = (N(Z)�(Z)�N(Y )�(Y ))=N(X) (19)

In this case U(Z) is a sufficient spanning set to rotate. To compute the rotation we use
the eigendecomposition:

N(Z)

N(X)
�(Z)rr �

N(Y )

N(X)
Grp�(Y )ppG

T
rp �

N(Y )

N(Z)
grg

T
r = Rrr�(X)rrR

T
rr (20)

where Grp = U(Z)TnrU(X)nq and gr = U(Z)Tnr(�Y � �X). The eigenvalues we seek
are the p non-zero elements on the diagonal of �(X)rr. Thus we can permute Rrr and
�(X)rr, and write without loss of generality:

Rrr�(X)rrR
T
rr = [RrpRrt]

�
�(X)pp 0pt

0tp 0tt

�
[RrpRrt]

T

= Rrp�(X)ppR
T
rp (21)

where p = r � q. Hence we need only identify the eigenvectors in Rrr with non-zero
eigenvalues, and compute the U(X)np as:

U(X)np = U(Z)nrRrp (22)

Splitting must always involve the solution an eigenproblem of size r.

2.3 Some comments on the solutions

Previously we presented a method for adding a single point, x, to an eigenspace [9]. It
can be shown [10] that the previous result is a special case of the above addition, with
(x; 0; 0; 1) as either operand. In terms of its outcome the above addition is both commu-
tative and associative (provided that in practice we allow for numerical errors, especially
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in association). The null eigenspace (0; 0; 0; 0) is an additive identity. As N(X)!1 so
the effect of adding 
(Y ) becomes negligible, and vice-verse. As both N(X) and N(Y )

tend to infinity together, so the result tends to a stable state.
The time complexity for addition will shadow that used in computing the eigenvalue

decomposition. Our experiments [10] demonstrate that time is proportional to the cube of
s, the size of the eigenproblem to be solved (we used a proprietary implementation). We
also found that the time to compute two eigenspaces ab initio and add them is about that
of computing a large eigenspace using all the original data. However, it is much more effi-
cient to add a new eigenspace to an existing one rather than compute the large eigenspace
using all the original data. Similar remarks apply to splitting: removing a few data points is
a comparatively efficient operation. The conclusion we reach is that addition and subtrac-
tion of eigenspaces is no less efficient than batch methods, and in most cases is performed
much more efficiently.

We have compared the angular deviation of eigenvectors, change in eigenvalues, accu-
racy of data representation in the least-squares sense, and classification performance [10].
The incremental methods for adding generally compare very well with batch methods,
with discrepancies being a minimum when the two eigenspaces added are of about the
same size; the exception is the discrepancy in eigenvalues, which shows a maximum of
about one part in 10

5 at that point. Reasons for this behaviour are the subject of future
work — we have not yet undertaken a rigorous analysis of errors.

The subtraction operator tends to instability as the number of points being removed
rises, since in this case N(X)! 0, hence 1=N(X)!1. In the limit of all points being
removed N(X) = 0, and an exception must be coded to return a null eigenspace. Unfor-
tunately, we have found that prior scaling by N(X) to be ineffective and have concluded
that, in practice, subtraction is best used to remove a small fraction of the data points.

3 Applications

An obvious application of our methods is to build an eigenspace for many images — too
many to all at once fit into memory. We ran a simulation of this by building two eigen-
models: one using batch methods and another using our incremental methods. We were
then able to compare the two models. The eigenspaces themselves turn out to be very sim-
ilar, although differences between batch and incremental eigenspaces are greater in cases
where eigenspaces are subtracted. Performance results bear out intuition: those images
used to make the eigenspace had a much lower residue error than those not so used. How-
ever, as more images were used in the construction, so the maximum residue error for each
image rises — but not so high as to reach the minimum residue error for images not used in
eigenspace construction. Classification results follow a similar trend: each image is better
classified by an eigenspace that uses all images.

We now present two more substantive applications of our methods. These are of a
generic nature. The intention is to furnish the reader with a practically useful appreciation
of the characteristics of our methods, and avoid the specific problems of any particular
application.
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3.1 Building an accurate eigenspace model

Here we consider an image database application. The scenario is that of a University wish-
ing to efficiently store photographs of its thousands of students for use in a security appli-
cation of some kind, such as access to a laboratory. The students are to be identified from
their facial appearance. This problem is well researched, and we do not claim to make a
contribution, rather we aim to show how our methods might be used in a support role. In
particular, we consider the case in which the database of images changes, as old students
leave and new ones arrive.

We will proceed in a very simple way: construct an eigenmodel of all those people
who are to be recognised, and rely on the fact that eigenmodels do not generalise well to
new instances exclude others. To allow for changes in pose, expression, and so on, we will
use several images of each individual.

Conventional batch methods cannot be used to construct an eigenmodel because not
all images can fit into memory at once, so incremental methods are a pre-requisite to our
approach. Given that the database is subject to change we could reconstruct an eigenmodel
at each change, but we will use our incremental methods to effect the changes more effi-
ciently; for which subtraction is required.

We will use the Olivetti database of 400 faces [14] as our group of students. We con-
structed an eigenmodel from a selection of 20 people, there being 10 photographs for each
person. Each person in the entire database was then give a “weight of evidence” between
0 (not in the database) and 1 (in the database). To compute the weight we computed the
maximum Mahalanobis distance (using Moghaddam and Pentland’s method [12]) of any
photograph used in constructing the database. Each photograph was then judged as “in”
if its Mahalanobis distance was less than this. Since each person has 10 photographs as-
sociated with them, we can then compute a weight for each person as the fraction of their
photographs classified as in.
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Figure 2: Weight of evidence measures: year 2 batch (left), and year 2 incremental (right).

Figure 2 show the “weight of evidence” measure for the second year our hypothesised
database has been running. The leftmost plot shows the measure for the images against
a batch model. That on the right shows the same measure for the same images, but for a
model incrementally computed from year 1 by including new and removing old students.

We notice that both models produce some false positives in the sense that some peo-
ple who should not be classified an in have a weight larger than zero. We notice that the
incrementally computed eigenspace gives rise to more false positives than the eigenmodel
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computed via batch methods — in line with earlier observations on subtraction. However,
the weight-of-evidence factor is less than one in every case, no matter how the eigenmodel
was computed, and this fact (or some other more sophisticated test and pre-processing)
could be used to eliminate false positives.

Given our observations, above, regarding previous measures when subtracting eigenspaces,
we conclude that additive incremental eigenanalysis is safe for classification metrics, but
that subtractive incremental eigenanalysis needs a greater degree of caution.

3.2 Dynamic Gaussian mixture models

We are interested in using our methods to construct dynamic GMMs. Gaussian mixture
models are useful in computer vision contexts [5]. Our approach treats a GMM as a hi-
erarchy of eigenspaces, which is a mechanism for improving the specificity of the data
description [11]. To construct a hierarchy we fist make a eigenmodel, then project all data
into it to reduce dimensionality, construct a GMM using the project data, and represent
each mixture as an eigenmodel. Thus, each Gaussian in mixture can be thought of as a
hyperellipse, and each may have a unique dimension. The problem here is to merge two
such GMMs.

As an example, we used photographs of two distinct toys, each photographed at 5 de-
gree angles on a turntable. Hence we had 144 photographs. Examples of these photographs
can be seen in Figure 3. The photographs were input in four groups of thirty-six pho-
tographs.

Figure 3: Sample images of each toy used as source data in our dynamic GMM application.

To merge the GMMs we first added added together the four eigenspaces to make a com-
plete eigenspace. Next we transformed the GMM clusters into this space, thus bringing
each of the thirty-six GMMs (eighteen from individual eigenspace) into the same eigenspace
and covering the ensemble of data. As before, each Gaussian in the mixture model was rep-
resented by an eigenmodel. Hence, we were able to reduce the number of total Gaussians
in the mixture by merging eigenmodels. We used a very simple criteria to merge based on
reducing volume of hyperellipses.

We thus generated a final GMM with a total of twenty-two Gaussians. These clus-
ters tend to model different parts of the cylindrical trajectories of the original data pro-
jected into the large eigenspace. Examples of cluster centres are shown in Figure 4, the
two models can be clearly seen in different positions. In addition, we found a few clusters
occupying the space “in between” the two toys — an example of which is seen in Figure 4.

Of course, the utility and properties of the final GMM is fully in line with any produced
by conventional means, and hence can be used in any application that a conventional GMM
is used. We conclude from these experiments that dynamic GMMs are a feasible proposi-
tion using our methods.
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Figure 4: Dynamic Gaussian Mixture Models, showing 5 examples of the 22 cluster cen-
tres. These are arranged to show clusters for each toy (top row), and the clusters between
them (bottom).

4 Conclusion

We have presented methods for adding and subtracting eigenspaces. We have discussed
the form of our solutions, and shown that previous work is a special case of this work. Our
contribution is to track the mean in a principled way, which makes our contribution novel.
This is essential in classification applications, which makes our contribution important.

Having conducted experiments comparing eigenspaces and some of their performances
metrics, and (reasonably generic) applications, and having experimented with several more
applications we have concluded that the addition of eigenspaces is stable and reliable. We
advise that our methods be used carefully — any statistical method may be misapplied.
Especial care should be taken when subtracting eigenspaces: the way in which the results
are to be used impacts on efficacy.

We should point to the several omissions from this work: We have not performed any
rigorous error analysis and hence any explanations we have for the behaviour of our algo-
rithms (in terms of approximating the “batch” version) are anecdotal in character. We have
not compared our method to singular value decomposition (SVD) techniques. Thus far we
have been able to block update SVD models, at the expense of keeping all the right singular
values — but have been unable to find a solution for block downdating, except via EVD.
Presenting our SVD solution, explaining why block downdating is not directly possible,
and comparing EVD with SVD would unduly extend this paper. We have not fully worked
through any particular application as yet and so can make general recommendations only.
We have also omitted comparisons with other incremental methods: most deal with adding
one new data point. However, in a previous paper, dealing with that very issue, we pre-
sented experimental evidence to show that updating the mean is crucial for classification
results [9].

We would expect our methods to find much wider applicability than those we have
mentioned, updating image motion parameters [4], selecting salient views [3] are two ap-
plications that exist already. We have experimented with image segmentation, building
models of three-dimensional blood vessels, and texture classification. We believe that dy-
namic Gaussian mixture models provide a very interesting future path for it enables useful
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representations [5, 11] — and all their attendant properties — to be brought into a dynamic
framework.
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