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Abstract

Automatic Target Recognition (ATR) is a demanding application that re-
quires separation of targets from a noisy background in a sequence of im-
ages. In this paper, two adaptive methods for describing such a background
are proposed which are based on Principal and Independent Component Ana-
lysis of sampled image patches. Coupled together with feature selection and
outlier detection techniques they enable the ATR system to adapt to certain
backgrounds and identify non-standard elements in the images as targets. The
methods proposed are compared with a standard wavelet-based approach and
are shown to perform somewhat better on a difficult image sequence.

1 Introduction

Automatic Target Recognition (ATR) is concerned with the detection, tracking and re-
cognition of small targets using input data obtained from a multitude of sensor types
such as forward looking infrared (FLIR), synthetic aperture radar (SAR) and laser radar
(LADAR). Applications of ATR are numerous and include the assessment of battlefield
situations, monitoring of possible targets over land, sea and air and the re-evaluation of
target position during unmanned missiles weapon firing.

An ideal system will exhibit the properties of a low false positive rate (detection of
a non-target as a target), whilst obtaining a high true positive rate (the detection of a
true target). This performance should be invariant to the following parameters: sensor
noise; time of day; weather types; target size/aspect and background scenery. It should
be flexible such that it has the ability to detect previously unseen targets and be able to
retrain itself if necessary. It is unlikely that one single system will cope well with all these
possible scenarios [2]. The many challenges produced by ATR have been previously well
documented in [3], [13] and [1].

In this paper an adaptive ATR system is proposed, which decides how to best distin-
guish the target from a particular background or clutter. In the bootstrap phase a statistical
model of the background is built by using a set of texture filters. In operation, the same
features are computed for each new pixel arriving at the sensor input. A statistical test
is then applied to this pixels feature vector to determine whether it belongs to the same
region as the background or it is an outlier, i.e. a potential target. This general back-
ground/target concept is not new with some systems already using such an approach [10].
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The novelty of this work is in the techniques applied to obtain a suitable set of filters
which ensure that the background/target separation is maximised during training. Usually
a standard set of texture filters such as Gabor and wavelet transforms are computed to
attempt to model the background and distinguish the target. The problem with this ap-
proach is that the filters will respond differently to different textured background. In some
circumstances the targets will not be found as outliers and will be lost in the background.

In this system, Principal Component and Independent Component analysis are used to
design a set of texture filters from randomly sampled image patches taken from a training
image. This ensures that these filters have a mean response when presented with a similar
looking texture. If an object with different texture, such as a target, is presented to the
filter the resulting response should be non-mean, making its detection as an outlier easier.
To further enhance the separation a feature selection stage has been added which selects
a subset of the filters which maximise the distance between the background and target.

It will be shown that the adaptive methods of PCA and ICA can work in target recog-
nition applications and that they outperform a more traditional wavelet-based approach.
This is demonstrated on two sequences of targets appearing on a sea-scaped background.
Feature selection is shown to be a useful tool which helps achieve a higher recognition
performance. It will also be demonstrated that using prior knowledge improves the recog-
nition rate.

The rest of this paper is organised as follows: in the next section the target detection
algorithm is detailed in full. In section 3 the filter generation methods of PCA and ICA are
explained. Section 4 presents the results of the experiments on the two image sequences.
Finally, some conclusions are drawn and recommendations for future research are given.

2 The method

2.1 Statistical background modelling

The target detection problem can be viewed as an outlier detection problem. That is,
anything that does not normally occur in the background can be seen as a target. Following
this idea, our algorithm is based on the following steps:

� describe the background using a statistical model;

� optimise both the model and model size using training data;

� find outliers by deciding, per pixel, whether it is accurately described by the model.

The first step therefore is to generate a statistical model of the background by com-
puting a series of n features for each pixel in a training image. These features can be
arbitrarily chosen, but in this work we chose to use a set of Daubechies wavelets, a PCA
subspace of image patches and an ICA subspace of image patches. These three feature
extraction methods are explained in sections 3.1, 3.2 and 3.3, respectively.

For every pixel in the image we thus obtain a feature vector f = [y0; y1; : : : ; yn]. We
model background pixels using a Gaussian distribution with mean vector � and covari-
ance matrix�:

p(f) =
1
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n
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To detect possible targets in test frames the same set of n features is generated for every
pixel in the image. Each feature vector, f test, is tested in turn to see whether it belongs to
the same distribution as the background or is an outlier (i.e. possible target). This is done
using a measure known as the Mahalanobis distance:

dM = (f test � �)
T
�
�1

(f test � �) (2)

If dM is higher than a set threshold dthr the corresponding pixel is considered a target.

2.2 Feature selection

A problem is to find the features that maximise the Mahalanobis distance between back-
ground and target. Using many features increases computational burden whilst it can also
degrade results due to the so-called peaking phenomenon.

More formally the problem of feature selection is defined as follows. Given a set Y
of n measurements, Yn = [y1; y2:::yn] we wish to select a sub-set Xk = [x1; x2:::xk] of
k features, k < n, such that each feature xi is identical to a distinct measurement yj . We
wish to do this such that the set Xk is optimal with respect to a criterion function J (�k)

defined over all possible sets of k out of n measurements, i.e.

J (Xk) = max
�k

(�k) (3)

where �k denotes a candidate set of features, �k = f�i j i = 1:::k; �i 2 Y g.
A criterion function is required which gives a reliable measure of a candidate feature

sub-set. For this application, the maximum Mahalanobis distance between target pixels
and the mean of the background pixels was used. The criterion function is evaluated as
follows:

1. select a sub-set of features, �k, for which the performance has to be evaluated;

2. estimate the mean vector � and covariance matrix � of the background in this
feature space;

3. calculate the Mahalanobis distance of all the target pixel features to the mean of the
background pixel features;

4. the maximum distance over all the target pixels is the criterion value J(�k).

This measure was chosen because it ensures that the selected features maximise the dis-
tance between target and background. Once a criterion function is defined, feature selec-
tion is reduced to a problem that involves searching for the optimal feature sub-set from
among all possible feature sub-sets, i.e. the one with the lowest error. For this system
the sequential floating forward search (SFFS) [12] was implemented which gives near
optimal performance but with low computational cost. Once the best features are identi-
fied for each feature set cardinality, a graph which plots the criterion function value as a
function of feature sub-set size can be used to select an optimal feature sub-set.
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Figure 1: The Daubechies wavelets used.

3 Feature sets

3.1 Wavelets

As a baseline method, a series of Daubechies wavelet transforms is used. The filter coef-
ficients (4-, 6-, 8- and 10-tap) are shown in figure 1. Horizontal and vertical convolution
with the 4 wavelet bases gives a set of 16 texture features [4].

3.2 Principal Component Analysis (PCA)

Instead of using pre-defined features such as wavelets, one can also try to describe the
background adaptively. In this work, both Principal Component Analysis and a relat-
ively new technique called Independent Component Analysis (which will be discussed in
section 3.3) are used.

Principal Component Analysis (PCA, also known as the Karhunen-Loève trans-
form [6]) finds a linear r:c-dimensional base to describe the dataset. It finds axes which
retain the maximum amount of variance in the data. To construct a PCA base, firstly N

random rectangles of size r � c are taken from a set of training images. Optionally, these
image patches can be weighted using a 2D Gaussian (with �x =

c

4
; �y =

r

4
). These

rectangles are then packed into a r:c-dimensional vector xi, usually in a row-by-row fash-
ion. This results in a data set X containing N samples. The principal components are
the eigenvectors of the covariance matrix of X. These are the columns of the matrix E,
satisfying

EDE
�1

= E(XX
T
) (4)

where D is a diagonal matrix containing the eigenvalues corresponding to the eigen-
vectors in E. The PCA filters can be expressed as

W = D
�

1

2E
T (5)

The corresponding basis vectors, the columns ofA, are simply the inverse of the filters:

A = W
�1 (6)

3.3 Independent Component Analysis (ICA)

Independent Component Analysis, or ICA, has gained widespread interest in the last few
years. It is a linear model, like PCA, but finds independent components instead of uncor-
related components.
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The basic ICA model supposes, like PCA, a linear model for the data. In general, a
data vector x is viewed as being a mixture of a number of unknown sources s:

x = As (7)

where A is an unknown mixing matrix, which also has to be estimated. The goal is to
find the separating matrixW:

SPs = Wx (8)

where S is a scaling matrix and P a permutation matrix. Note that simple PCA can
also solve this problem. However, if one demands that the sources s are not merely
uncorrelated, but independent, one has to perform ICA.

As there is no simple mathematical derivation of the independent components, usually
iterative algorithms are used to find them. In this work, the fastica algorithm proposed
by Hyvärinen et al. [8] was used, which tries to identify independent components by the
following reasoning.

From the central limit theorem, we know that summing a number of independent,
non-Gaussian distributions leads to a Gaussian-like distribution. Therefore, if we project
the data we have onto an axis and we obtain a Gaussian-like distribution, we will not
have unmixed the various distributions. However, if we find a projection which gives a
non-Gaussian distribution, we may infer that we have separated one single distribution.
Note that this means that we cannot separate different Gaussian distributions.

The measure most often used for non-Gaussianity is the absolute value of the kurtosis
of a distribution, i.e.

�4(u) = E(u
4
)� 3(E(u

2
))
2 (9)

As uncorrelatedness is a necessary (but not sufficient) prerequisite for independence,
it makes sense to first pre-whiten, or sphere, the data x by centering it (i.e. make it
zero-mean) and projecting it onto a PCA basis. Note that this pre-processing step is a
prerequisite for the fixed point algorithm.

Since ICA is based on higher order statistics, as opposed to PCA which only uses
second order statistics, one would expect that ICA might be able to use phase information
rather than just frequency magnitude information. It is well-known that phase plays a
more important role in image formation than magnitude (e.g. [11]).

3.4 Algorithm parameters

The final algorithm, i.e. texture representation, feature selection and classification, has a
number of parameters, each of which influence the final results. These parameters are:

� Data selection (PCA, ICA only):

– window size (r; c)

– window weighting (uniform or Gaussian)

– sample size (N )

� Feature selection:
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– number of features to use (�k)

– threshold for detecting outliers (dthr, expressed in terms of the maximum
Mahalanobis distance in the training set: dthr = pthr:J(�k))

Although in principle these parameters could be optimised automatically, in our experi-
ments these parameters were tuned manually.

4 Experiments

4.1 The data

The proposed system was applied to two sequences, made available by DERA Farnbor-
ough. The first sequence consisted of 100 simulated images of an airplane flying over a
sea, from left to right. In the first and last 10 images, the airplane was not visible. All 100
images were accompanied by ground truth. An example is shown in figures 2 (a) and (b).
The second sequence consisted of 20 simulated images of 5 very small targets (1 pixel
each) in a sea, some of which were moving. Finding the targets in this sequence was very
hard even for human observers. A ground truth was available only for the first image,
shown in figures 2 (c) and (d).

4.2 Sequence 1

In all experiments, the training image used was the 50th (shown in figure 2). From this
image, a number of samples were drawn by placing r � c windows at random positions.
As a pre-processing step, the mean was subtracted from each vector [7].

Wavelet, PCA and ICA features were extracted from the data set. Classification was
performed as follows: first, an optimal number of features (10) and an optimal corres-
ponding threshold were chosen by hand. Then, for each image, all possible image patches
were considered (i.e. overlapping) and projected onto the first 10 basis vectors. In the res-
ulting 10-dimensional space, where each point represents a pixel in the original image,
only points with a distance larger than pthr times the maximum Mahalanobis distance in
the training set were counted as target points.

As many false negatives were found to lie on the border of the actual target region, the
binary ground truth image was dilated twice with an 8-connected neighbourhood. This
means that false negatives within a range of 2 pixels from the actual targets are not counted
as errors.

For each image, we obtain a number of false positives and false negatives. These
numbers are plotted in figures 3. Only the optimal results, obtained for N = 10000, r = c

= 4, Gaussian weighting, and j�kj = 10 are shown. Clearly, the results are satisfactory for
the application. A simple motion tracking can help rejecting spurious false positives. In
some cases the target is lost, but it usually resurfaces within a number of frames.

There is a clearly periodic behaviour in each of the graphs. We believe this to be the
result of the target passing through waves, which obscures the high frequency edge which
triggers recognition. The periodicity could be the result of the waves rolling in subsequent
frames.

The three texture representation methods work almost equally well on this problem.
The adaptive methods do not outperform the simple wavelet approach, and there is hardly
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(a) Sequence 1 (b) Sequence 1 ground truth

(c) Sequence 2 (d) Sequence 2 ground truth

Figure 2: Examples of the original images and ground truths for sequences 1 and 2. For
sequence 2, the ground truth has been enhanced: the original size of each of the objects is
1 pixel.

any difference between the PCA and ICA results. This is probably due to the feature
selection process, which equalises performance by choosing only features that contribute
enough. Also, it is quite easy to find the target in most of the frames, giving all methods
the opportunity to perform well.

4.3 Sequence 2

On first application of the techniques to the second sequence, performance was poor for
all feature sets. Therefore, the following pre- and post-processing steps were added:

� As the granularity of the texture in the image changes gradually from top to bottom
(which is prior knowledge in many real-life situations), it was decided to divide the
image into regions (horizontal bands), which were individually processed. For each
region, a different optimal window size and set of filters were found.

� As from one frame to the next the objects will stay in approximately the same place,
a temporal constraint was added: for a pixel to be classified as a target, it had to
be present in at least some of a number of consecutive frames. The segmented im-
ages were dilated once using a 8-connected neighbourhood mask, to take moderate
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Figure 3: Final classification results for (a) wavelet features, for pthr = 0.85; (b) PCA and
(c) ICA, both with pthr = 0.9.

(a) Wavelet-based classification

(b) PCA-based classification

Figure 4: Classification results for the first four frames of sequence 2, using wavelet fea-
tures (a) and PCA features (b). All objects found were enlarged for presentation purposes.

motion into account, and added. Only pixels with a count above a certain threshold
were considered to be target pixels.

This adds a number of new parameters: the number of regions to split the image into (R),
the number of consecutive frames considered (F ) and a threshold on the number of frames
in which the target should appear (Fthr). These parameters were chosen as follows: R =
4 equally sized regions after deleting the region above the horizon; F = 7 and Fthr = 3.

Only the best results obtained for the wavelet and PCA features are presented. The
settings were: r = c = 4; N = 1000; uniform weighting window; �k = 10; dthr = 0.6
(wavelets) and 0.9 (PCA). The ICA results were nearly identical to those obtained using
PCA, and are not presented. As there was no ground truth available, it is impossible to
calculate the number of false and true positives. Therefore, we plot the first four target
segmentation results for each of the methods. These are shown in figure 4.

The wavelet features give an optimal result of 3 targets found, whereas the PCA (and
ICA) features find all targets in 2 of the frames. In this case, adaptive methods prove
better than the wavelet approach.
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5 Conclusions and recommendations

We have shown that adaptive methods can work in target recognition applications. In
general it is possible to recognise a substantial portion of the target without detecting
any false positives. Where false positives do occur, they are usually lost within a small
number of frames. Although on Sequence 1 these methods performed no better than a
standard wavelet approach, in the more complicated Sequence 2 their performance was
much better.

The performance of both PCA and ICA on both sequences seemed to be comparable.
We believe this to be partly explained by the fact that the feature selection process will
obscure any differences by choosing that subset of features which performs best. In that
light, it seems to be preferable to use PCA. Firstly, it has a much lower computational
complexity. Secondly, there is a guaranteed ordering in the PCA features, whereas with
ICA there is no telling what independent components will be found and in which order.

Some recommendations for further research are:

� At the moment, the system has a number of free parameters which, in the exper-
iments, were tuned manually. It should not be difficult (albeit computationally
intensive) to devise a way of optimising them automatically.

� The current system needs a ground truth to train on. One could look at ways of
training without the need for a ground truth, e.g. by choosing background model
compactness as an optimisation criterion instead of the maximum Mahalanobis dis-
tance.

� Investigate the use of different models for the background. At this moment, the use
of the Mahalanobis distance implicitly assumes the background can be described as
a normally distributed data set. The use of more general data description methods
(or outlier detection methods) such as forcedly closed decision boundaries [10],
clustering [9], radial basis function networks [5] or local density estimation [14]
could improve performance.

� It seems advisable to pre-segment the image roughly into areas of homogeneous
texture, as was done for sequence 2. One could, for example, locally measure
texture granularity and cluster the measures found into a certain (small) number of
clusters. Using the knowledge that the image should be split horizontally, one could
then find the region locations automatically.

� A logical extension is the use of motion information. In this work, motion has been
only used crudely in the temporal summation of segmented images. True motion
estimation might help in finding back moving targets. Having said that, a prerequis-
ite for many motion estimation techniques is to have a good spatial segmentation,
which is exactly the problem that has to be solved.

� It is always advisable to use prior knowledge, whenever possible. The knowledge
that most natural scenes can be split up horizontally into regions of homogeneous
texture (sky, sea) is an example of this. If more such knowledge could be included,
this might benefit the application.
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