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Abstract
Current learning approaches to computer vision have mainly focussed on low-level

image processing and object recognition, while tending to ignore higher level proc-
essing for understanding. We propose an approach to scene analysis that facilitates the
transition from recognition to understanding. It begins by segmenting the image into
regions using standard approaches, which are then classified using a discovered fuzzy
Cartesian granule feature classifier. Understanding is made possible through the
transparent and succinct nature of the discovered models. The recognition of roads in
images is taken as an illustrative problem. The discovered fuzzy models while pro-
viding high levels of accuracy (97%), also provide understanding of the problem do-
main through the transparency of the learnt models. The learning step in the proposed
approach is compared with other techniques such as decision trees, naïve Bayes and
neural networks using a variety of performance criteria such as accuracy, understand-
ability and efficiency.

1. Introduction
Fischler and Firschein [1] list learning, and representation and indexing into a

large databases of stored knowledge as two of the open issues in computer vision. This
situation arose mainly because traditional image understanding focused on techniques
from physics, mathematics, psychology, computer science and artificial intelligence
that depended tremendously on human input and direction. This usually led to many
limitations and endless assumptions on what these techniques could achieve, and usu-
ally were labour intensive, limited, and sensitive to change. Examples include knowl-
edge-based approaches such as [2] and [3], and model-based approaches such as [4-6].
More recently people have turned to machine learning as means of building robust,
general-purpose systems (for example [7, 8]) with many application areas including
image database indexing [7]. Current approaches to computer vision, which use
learning, can be differentiated based on the extracted models using the following crite-
ria: effectiveness (accuracy of model on unseen data), understandability (to user or
expert in the domain) and evolvability (ability to adapt over time to a changing envi-
ronment). Most current approaches satisfy understandability or effectiveness, but not
simultaneously, while tending to ignore knowledge evolution. For example, Winston’s
[9] landmark work on symbolic learning in the field of image understanding provided
a high level approach using semantic nets to learn object structures from examples and
counter-examples (Winston’s near-misses) while largely ignoring lower level image
processing. Other approaches based upon learning semantic net representations in-
clude the classification of hammers and overhead views of commercial aircraft [10].

1 Communication should be addressed to James.Shanahan@xrce.xerox.com who
has recently moved to Xerox Research Centre Europe (XRCE), Grenoble Laboratory,
6 chemin de Maupteruis, 38240 Meylan, France.
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Michalski et. al. [11] provides some interesting results using a battery of learning ap-
proaches: rule-based learning, neural network learning, and a hybrid of the two. While
the application domains of outdoor image classification and the detection of blasting
caps in X-ray images of luggage were interesting, there were limited to rather simple
uncluttered scenarios. A novel approach to learning the rules of perceptual organisa-
tion using fuzzy modelling techniques (resulting in intuitive and transparent models)
proposed in [12, 13] may lead to interesting results in the fields segmentation and rec-
ognition.

Learning approaches that have provided high levels of accuracy have tended to
rely upon extracting models which are dominated by black box modelling and repre-
sentation techniques: e.g neural network [14-16] or eigenspace-based models [8, 17, 18].
Consequently these approaches provide little or no interpretability or evolvability [19]
(not addressed further in this paper). Here we propose a new approach to image un-
derstanding, based upon Cartesian granule features [20], that not only provides high
levels of accuracy, but also facilitates understanding due to the transparent and suc-
cinct nature of the knowledge representation used. The approach is illustrated on a
road recognition problem.
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Figure 1: Three stages in classifier generation: Feature Value Generation,
System Generation, System Evaluation. Note these stages are iterative.

2. Vision Problem & Proposed Approach
We address the problem of recognising object regions in outdoor scenes. The

problem is partitioned into two natural but distinct parts: region segmentation and
region classification. Segmentation is achieved using standard image processing ap-
proaches (and is not the focus of attention here), and region classification is carried
out by a classifier. Each segmented region is described using a variety of features such
as colour, location, texture, shape etc.. The main goal of this research is to construct a
classifier, automatically from examples, that satisfies the performance accuracy and
understandability criteria simultaneously as mentioned in Section 1. In order to meet
both criteria we propose to represent the road classifier as an additive fuzzy Cartesian
granule feature model that consists of if-then-rules with weighted antecedents whose
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values are fuzzy sets defined over Cartesian granule features (see for example Figure
3) [20]. Cartesian granule feature based classifiers can be constructed automatically
from example data (region feature values) using the G_DACG (Genetic Discovery of
Additive Cartesian Granule feature models) constructive induction algorithm [21, 22].
Section 3 gives a brief overview of Cartesian granules features and the G_DACG in-
duction algorithm. Figure 1 presents a block diagram of the proposed approach in
terms of three main tasks: feature value generation, system generation, and system
evaluation.

3. Modelling with Cartesian Granule Features
Cartesian granule features [20] are a new type of multidimensional feature defined

over the Cartesian product of words drawn from the linguistic partitions of the con-
stituent feature universes. They can overcome decomposition error, and also provide
model transparency that would facilitate user understanding. Cartesian granules
(characterised by fuzzy sets) provide an abstraction of the multidimensional universe
by carving it into regions that are drawn together as result of indistinguishability,
similarity, proximity or functionality. A fuzzy set can be defined over a Cartesian
granule universe as a discrete fuzzy set where each Cartesian granule is associated
with a membership value, which is calculated by combining the membership values
(using a T-norm such as product or maximum), individual feature values have in the
fuzzy sets which characterise the granules.

Figure 2 presents the Cartesian granule fuzzy set induction algorithm. It is pre-
sented using an illustrative example of how to extract a Cartesian granule fuzzy set
corresponding to car positions in images from example car positions where the top left
table corresponds to examples of car positions, corresponding linguistic (fuzzy set)
descriptions and least prejudiced distributions (LPDs or probability distributions).
Mass assignment theory provides a formal mapping between linguistic descriptions
(fuzzy sets) and probability distributions [23]. The top middle graph corresponds to the
initial Cartesian granule frequency distribution, where the granule characterisations
(i.e. the fuzzy sets) are also shown. The top right graph depicts the Cartesian granule
frequency distribution after updating with the LPD corresponding to the value of 40.
The right middle graph shows the Cartesian granule frequency distribution after up-
dating with the LPD corresponding to the value of 60. The right bottom graph displays
the Cartesian granule frequency distribution after counting all the LPDs corresponding
to the example car positions. Finally the left bottom graph depicts the corresponding
Cartesian granule fuzzy set for car positions in images i.e. a linguistic summary of car
positions in images in terms of the words left, middle and right. In this case the Carte-
sian granule feature is one dimensional in nature for presentation purposes but could
be multidimensional. See [21, 24] for full details of the Cartesian granule feature in-
duction process.

In [21] we have shown that systems can be quite naturally described in terms of
Cartesian granule features incorporated into rule-based models. Here a region-based
fuzzy classifier is constructed automatically from example data (region feature values)
using the G_DACG constructive induction algorithm [21, 22]. The G_DACG algo-
rithm discovers good Cartesian granule features (i.e. the feature subsets and the fea-
ture universe abstractions). G_DACG is a population-based search algorithm (based
on genetic programming), where each node in the search space is a Cartesian granule
feature. G_DACG iteratively hones in on good Cartesian granule features based on the

BMVC99

434



evolutionary operations of crossover, mutation and reproduction. Good Cartesian
granule features are subsequently incorporated into rule based models (see for example
Figure 3). Inference is carried out using evidential reasoning and semantic unifica-
tion/match of class fuzzy sets and data fuzzy set [23]. Classification corresponds to
taking the class associated with the maximum of the inferred results.
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Figure 2: Induction of the Cartesian granule fuzzy set for car positions in images.

4. Feature Selection and Generation
The Bristol Image Database [7, 25] consists of over 350 colour images of a wide

range of urban and rural scenes. Figure 5 (lower left quadrant) depicts a typical urban
scene in this database. Eighty images of typical outdoor rural scenes were selected
from the Bristol image database. Subsequently these images (characterised by inten-
sity) were segmented into road and non-road regions using the k-means segmentation
algorithm, where k was set to 4. Previous results have shown the k-means algorithm to
be effective [7] (see also the upper left quadrant of Figure 5). This resulted in 13,628
regions being generated. Feature values were subsequently generated for each region
feature. Non-overlapping training, validation and test sets of regions were subse-
quently generated in a class-wise manner as follows: 70% of data allocated to training,
15% to validation and 15% to testing. Table 1 gives a sample-count breakdown for
each class. For the road classification problem each segmented image region was de-
scribed using a set of over sixty features, comprising of colour, location, orientation,
size, shape and texture features. In order to reduce the complexity of the learning pro-
cess a neural network-based “filter” feature selection algorithm was applied to this
feature set [19]. This resulted in ten features been selected as representative features
for task of road classification. The first three features correspond to the average lumi-
nance and colour differences in a region. The location of the region is expressed as the
X and Y co-ordinates of the region centroid. Orientation is expressed as the sine and
cosine of the angle of the principal axis. The next feature corresponds to the principle
mode of the PCA (principle component analysis [26]) transformed region boundary
description. The last two features arise from the use of a psychophysically plausible
model of texture, based upon Gabor filters. In this case the features correspond to two
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high frequency (128 and 256) isotropic Gabor filters. A full description of all features
is presented in [19].

5. Classifier Generation & Application
We applied the G_DACG constructive induction algorithm to the road classifica-

tion problem. The reduced feature set of ten base features and Cartesian granule fea-
tures of dimensionality up to three with granularity ranges of (2,..,12) were considered
(while parsimony was promoted) thus yielding a search space of over 500,000 nodes.
The G_DACG algorithm iterated for fifty generations and at the end of each genera-
tion five of the best Cartesian granule features were selected from the current popula-
tion. The discovered features were then used to form additive Cartesian granule fea-
ture rule-based models. Backward elimination was also employed, eliminating extra-
neous lowly contributing features. The models were evaluated using the test dataset.
Table 2 tabulates the results of some of the more interesting ACGF models that were
discovered using G_DACG. The models presented in Table 2 were constructed using
equal numbers of examples of Road and Not-Road for training. By equalising the
example count across classes a marginal improvement (of less than 1%) in test case
accuracy was achieved over learning from the original skewed training set. The results
correspond to additive models where the weights have been estimated using semantic
discrimination analysis [23]. For example when an additive model consisting of three
one-dimensional Cartesian granule features, was formed respectively over the features
Luminance, Y-B (Colour difference) and Y-Position, a classification accuracy of 95.5%
(after tuning the weights) on unseen image regions was achieved. The feature uni-
verses in this model were linguistically partitioned using five words, which are char-
acterised by uniformly placed trapezoidal fuzzy sets with 50% overlap. The additive
rule base is presented in Figure 3. The linguistic descriptions, characterised by a Car-
tesian granule fuzzy sets, corresponding to the luminance for Road and Not-Road
classes is presented in close-up detail in Figure 4.

Table 1: Object classifications for each region and corresponding sample counts.

Class
No. Class

# Train examples # Validation ex-
amples

# Test
examples

1 Not-Road 8381 1796 1797
2 Road 1157 248 249

TOTAL 13628 9538 2044 2046

Table 2: ACGF models discovered using the G_DACG algorithm.

Dim. Train %
Accuracy

Valid %
Accuracy

Test %
Accuracy

Optimised
Weights

Cartesian Granule
Features

1D 92 95 95.5 No ((0 5)) ((2 5)) ((4 5))
2D 94 93.3 96.6 No ((0 5)(2 5)) ((2 5) (4 5))
1D 92 95 95.5 Yes ((0 5)) ((2 5)) ((4 5))
2D 93.9 93.5 96.7 Yes ((0 5)(2 5)) ((2 5) (4 5))

Notice in the additive rule model in Figure 4 that the Luminance feature receives a
lower weight than the other features involved in the decision-making process. This is
mainly because the Luminance linguistic summaries do not provide as a good a sepa-
ration of concepts as the Y-B feature for example. Figure 5 presents a Java applet
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screendump illustrating the results of applying this ACGF model to a k-means seg-
mented image. The results are qualitatively very good from a classification perspec-
tive, however the low-level k-means and region growing process has under segmented
parts of the image, thus leading to some areas of the image being misclassified.

An additive Cartesian granule model composed of two two-dimensional features
give a marginal improvement over the one-dimensional model (see Table 2 for de-
tails). The test confusion matrix for this model is presented in Table 3.

6. Comparison and Discussion
The same data and reduced base feature set were used to compare ACGF model-

ling with standard induction learning techniques. Table 4 summarises the results. The
various approaches were evaluated using criteria such as model transparency, per-
formance accuracy, and efficiency of the learning algorithm.
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Figure 3: Additive Cartesian granule feature model for road classification.
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Figure 4: Linguistic summary, in the form of Cartesian granule fuzzy sets, of
luminance for Road and Not-Road Classes.

Table 3: Confusion Matrix generated by the discovered 2D model (optimised).

Actual\
Predicted NotRoad Road Total

Class
%Accuracy

NotRoad 1767 30 1797 98.3
Road 39 210 249 84.3
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6.1 Understandability and Glassbox-ness
One of the primary concerns of intelligent systems is that they should be able to

interact naturally with their environment. One of the integral parts of many domains
is the human, and consequently the intelligent system (agent) needs to interact with
the human. This can be achieved by a variety of means and at many different levels
such as a graphic display of trend data. However, one of the most natural forms of
communication (and sometimes most effective) is through words. The proposed ap-
proach has generated a road classification system that enlightens the user about what a
road is, in terms of luminance and other feature value descriptions. These descriptions
are in terms of words such as low and very low – generic words in this case, but these
could be assigned from a user-defined dictionary and supplemented with hedges such
as very, not so much, etc. and with connectives such as conjunctions and disjunctions.
Furthermore the weights associated with each feature inform the user of how impor-
tant a particular feature is in the inference process.

The induced Cartesian granule feature model facilitates a transition from a low-
level object recognition task to a high level understanding task which should greatly
simply human computer interaction. This simplification comes from the expression of
the knowledge in a form that is almost directly interpretable by the human user. The
proposed approach, while facilitating machine learning, may also facilitate human
learning and understanding through the generated anthropomorphic models.

With regard to the other approaches examined here, such as the ID3 and C4.5 al-
gorithms, the induced models while being readable tend to be large and consequently
makes understanding very difficult. In the case of neural networks and oblique deci-
sion trees, the induced knowledge is encoded in vectors of weights (and biases) which
may prove difficult for a user to interpret and understand.

A further consequence of readability and understandability is that it will generally
increase user’s confidence in the system and it can also enhance reliability. For exam-
ple, the user may enhance the systems reliability by identifying a data deficiency or a
variable deficiency.

Figure 5: (top left) The original image, (top right quadrant) k-means seg-
mented image and (bottom left quadrant) the results of region classification using
in this case a rule-based ACGF model The regions classified as road are high-
lighted in grey and the non-road regions are display in black.
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6.2 Computational Efficiency
From a classification task perspective, the induced models have similar computa-

tional requirements. Learning can be split into two subtasks: structure identification
and parameter identification. From a structure identification task perspective (i.e.
feature selection, determining a neural network topology, discovering Cartesian gran-
ule features) has varying computational requirements for the various approaches con-
sidered. These computational requirements are commensurate with the effectiveness of
the search techniques used to determine the structure of the induced model. For ex-
ample, the decision tree approaches (ID3 and OC1) have low computational require-
ments which arise from the local hill-climbing search technique used. This search
technique while facilitating efficient structure identification is vulnerable to local
minima. Furthermore, decision tree approaches such as ID3, in order to provide better
generalisation, require pruning [30], which can prove to be very expensive in the case
of bushy decision trees. On the other hand the G_DACG constructive induction algo-
rithm is computationally intensive which is due to the global, population based search
approach used but avoids local minima. The determination of neural network topolo-
gies is also computationally intensive.

From a parameter identification task perspective, again the computational re-
quirements vary with the approach used. In the case of ID3 no parameter identifica-
tion is required. Naïve Bayes parameter identification step has low computational re-
quirements, since the data examples need to be processed only once in order to esti-
mate the class densities. Parameter identification for OC1 and neural networks re-
quires the identification of weights and involves a search through the possible weight
space using various search algorithms that offer efficiency commensurate with the
effectiveness with the determined solution. Neural networks in the case of this prob-
lem are multi-layered and therefore require added computational power than their
single-layered oblique decision trees. Parameter identification for additive Cartesian
granule feature requires determining the class Cartesian granule fuzzy sets (involves a
single pass of the data), and also setting up the class aggregation rules. Additive mod-
els can be viewed as a single-layered network where identification of the class aggre-
gation rules reduces to the identification of weights and also of the filter function (not
presented here due to space restrictions). These identification tasks are performed in-
dependently and consequently are significantly more efficient than the parameter
identification of a multi-layered neural network.

In the case of additive Cartesian granule feature models, the system identification
step is not just concerned with identifying a model that provides high performance
accuracy (the goal of most other induction algorithms), but is also concerned with
identifying a model is glassbox in nature. This issue of identifying glassbox models,
while having extra computational requirements, is compensated by the identification
of models that facilitate understandability.
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Table 4: Comparison of results obtained using a variety of machine learning
techniques on the road classification problem.

Approach. # Features
used

% Accuracy

Additive Cartesian granule feature
model

3 96.7

Naïve Bayes [27] 10 96.2
Oblique Decision Trees [28] 10 94.7

Feed forward Neural Net [29] 10 97

ID3 or C4.5 [30] 10 92.75

6.3 Feature value representations
All input features for the road classification problem are continuous in nature. The

values of these features are single numbers, which in the case of some features corre-
spond to simple statistical measures such as the average. For example the luminance
value for a region corresponds to average pixel luminance value across that region. In
this case of the road classification problem such features prove adequate in modelling
the problem, but in the case of a more difficult multi-class problem more detailed fea-
ture values may be necessary. Single numeric values such as the measures used here
can be susceptible to noise, and generally lead to high data requirements for learning.
An alternative, and possibly promising, approach is to linguistically summarise the
pixel values using a one-dimensional Cartesian granule feature i.e. generate a linguis-
tic histogram. Other features that may benefit from linguistic summaries include the
texture features, the colour difference features, location feature etc. Linguistic summa-
ries of feature values provide more information to discriminate amongst different
classes while also combating the curse of dimensionality.

6.4 Alternative features
Current work describes concepts in terms of their own attributes, whereas more

succinct and possibly easier to understand concept definitions can be acquired where
objects are described in terms of other objects. For example an object could be defined
as similar to another object. In the case of induced Cartesian granule feature models,
class rules can be embellished by hand by adding in further conditions that a class
should satisfy. For example, a reasonable condition for the road class is that “cars
should be above road”, where the user provides the condition and also a definition for
above (or alternatively above could be extracted from example data by taking the dif-
ference in y-position.

7. Conclusions
A new approach to object recognition, based upon a Cartesian granule feature clas-

sifier, has been proposed that facilitates the transition from recognition to under-
standing. The approach was illustrated on a road classification problem, yielding high
levels of accuracy (97%) and very understandable models. The approach, when com-
pared with decision tree approaches, naïve Bayes and neural networks provided sim-
pler models with better accuracy that takes a little longer to discover. The extra dis-
covery time needed is mainly due to the search for a transparent model. Potential ap-
plications of the proposed approach include autonomous vehicle navigation systems
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and landmine detection, where magnetic resonance images of test sites could be used
to train an additive Cartesian granule feature model which would subsequently detect
landmines in a consistent and effective manner reducing the number of false alarms
that can prove expensive. Other envisioned applications include content based image
retrieval systems (CBIR). CBIR is an area which relies heavily on human-computer
interaction, where interaction requires understanding, and thus would greatly benefit
from the glassbox approach proposed here.
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