
Structural Features Of Cursive

Arabic Script

Mohammad S Khorsheed

Mohammad.Khorsheed@cl.cam.ac.uk

William F Clocksin

William.Clocksin@cl.cam.ac.uk

Computer Laboratory, University of Cambridge, New Museum Site

Cambridge CB2 3QG, United Kingdom

Abstract

We present a technique for extracting structural features from cursive

Arabic script. After preprocessing, the skeleton of the binary word image is

decomposed into a number of segments in a certain order. Each segment is

transformed into a feature vector. The target features are the curvature of

the segment, its length relative to other segment lengths of the same word,

the position of the segment relative to the centroid of the skeleton, and

detailed description of curved segments. The result of this method is used

to train the Hidden Markov Model to perform the recognition.

1 Introduction

The Arabic alphabet, as show in Table 1, is commonly used for writing many

widespread languages (e.g. Arabic, Urdu, Persian), yet there is much less research

in progress for recognising Arabic text than there is for Roman and Chinese text.

One factor accounting for this is the characteristics of the Arabic alphabet which

oblige researchers to examine some di�culties only recently being addressed by

researchers on other languages [1]. Among these characteristics is the cursiveness

of the script even in the machine-printed form.

To measure the performance of any Arabic text recognition system, we need

to assess how successful the system is in overcoming the obstacles of cursiveness

and context-sensitivity. The conventional approach is to segment the words into

either characters [3, 4, 7] or symbols [2, 9, 6]. The �rst type of segmentation is

the cause of recognition errors, and hence a low recognition rate. The second

type is where a sub-word, or a primitive, is segmented into symbols where each

symbol may represent a character, a ligature, or possibly a fraction of a character.

The advantage of the second type over the �rst is that it is easier to �nd a set of

potential connection points, than to �nd the actual connection points directly.

In this paper, we present another approach where the word is recognised as a

single unit. This depends highly on a prede�ned lexicon which acts as a look-up

dictionary. The procedure is to extract all segments from the skeleton of the word

1

BMVC99

422

BMVC 1999 doi:10.5244/C.13.42

British Machine Vision Conference 2

Char Iso Ini Mid End Char Iso Ini Mid End

a

�
@

�
@ A� A� b H. �K. �J. � I. �

t
�H �

�
K �

�
J� �I � t

�

�H �
�
K �

�
J� �I �

�g ` �c �b� a� h
:

h �k �j� i�

h
^

p �s �r� q� d X X Y� Y�

d
�

	
X

	
X

	
Y�

	
Y� r P P Q� Q�

z R R S� S� s � �� ��� ��

�s � �� ��� �� s
:

� �� ��� ��

d
:

� �� ��� �� t
:

 �£ �¢� ¡�

z
:

¤ �§ �¦� ¥� ` ¨ �« �ª� ©�
:

g
	
¨ �

	
« �

	
ª� 	

©� f ò �
	
¯ �

	
®� ó�

q ô �
�
¯ �

�
®� õ� k ¼ �» �º� ½�

l È �Ë �Ê� É� m Ð �Ó �Ò� Ñ�

n
	
à �

	
K �

	
J� 	á� h è �ë �ê� é�

w ð ð ñ� ñ� y ø

�K
 �J
� ù

�

Table 1: Arabic alphabet.

to be recognised, then transform each segment into a feature vector. Using Vec-

tor Quantisation (VQ) [8], each feature vector is mapped to the closest symbol

in the codebook. This results a sequence of observations that is presented to a

Hidden Markov Model (HMM) [11]. A number of reasons motivate the proposed

technique. First, we wish to dispense with segmenting words into characters or

other primitives. Next, extracting segments from the skeleton graph is more reli-

able than �nding the actual connection points in the word. Finally, the extracted

features are shape descriptors of the skeleton graph, so they provide a compromise

between powerful discrimination and e�cient extraction.

2 Preprocessing

The image of the word to be recognised is introduced to the system as a matrix of

black pixels (foreground) and white pixels (background). Two preprocessing steps

are then performed in sequence: thinning and centroid calculation.

The thinning method is based on Stentiford's algorithm [10]. The aim is to

remove boundary pixels of the character that neither are essential for preserving

the connectivity of the pattern nor do they represent any signi�cant geometrical

feature of the pattern. The process converges when the connected skeleton does

not change or vanish even if the iteration process continues.

The purpose of centroid calculation is to �nd a reference point relative to which

all segment locations are de�ned.

BMVC99

423

British Machine Vision Conference 3

c

a

f
b

d

e

a! b

�b! c

�b! e

c! d

�c! e

e! f

a! b

�b! e

c! d

e! f

Figure 1: segment and loop extraction. The segments: b ! c, b ! e and c ! e

are merged to form the complex loop b! e.

3 Feature Extraction

This stage transforms the word to be recognised into a sequence of feature vectors.

This is done in three consecutive steps: segment extraction, loop extraction and

segment transformation.

3.1 segmen t Extraction

The skeleton graph of a word image consists of a number of segments where each

segment starts and ends with a feature point. A feature point is a black pixel

in the image which has a number of transitions from black to white pixels in the

surrounding 3�3 window equals to: one (end point), three (branch point), or four

(cross point).

For the machine-printed fonts used in this paper, cross points appear only in

the skeleton of a word if this word has the letter (w,ð) in the middle (XñªK
) or at

the end (ñ«X). However, these actually consist of three branches connected to the

feature point: a loop and two other branches. This de�nes the cross point as a

branch point and consequently leads us to say that: a segment may be incident

between two end points, an end point and a branch point, a branch point and an

end point, or two branch points.

An important requirement for segment extraction is to ensure that segments

are assigned a canonical order, so that the observation sequence for the HMM is

well de�ned. The rule is: all segments are listed in descending order relative to

the horizontal value of the starting feature point of that segment.

3.2 Loop Extraction

During segment extraction, the skeleton is checked for loops, as seen in Fig.1. A

number of Arabic letters have a loop-like shape. These loops can be divided into

three categories: a simple loop, e.g. ò ô Ó, consists of a single segment that

starts from a feature point and returns to the same point again. A complex loop,

e.g. ¢ Ò �, either consists of two segments, both having the same starting and

�nishing feature points, or three segments. A double loop, e.g. ê ë, consists of two

connected simple and/or complex loops.

BMVC99

424

British Machine Vision Conference 4

3.3 segment Transformation

Having extracted segments and loops from the skeleton graph of the word im-

age, each segment is now transformed into an 8-dimensional feature vector. Each

feature has the following description:

1. Normalised length feature (f1): This feature gives the length of a segment

relative to other segment lengths in the same word. It is calculated as follows:

f1 =
ActualLength � ELmin

ELmax � ELmin

(1)

where ELmin and ELmax are the minimum and the maxim um segment

lengths for that word, respectively. This feature tolerate font size and rota-

tion.

2. Curvature feature (f2): This feature measures the curvature of a segment.

Simply divide the Euclidean distance between the two feature points of that

segment by its actual length. This feature equals zero when the segment is a

loop, and 1 when the segment is a straight line. Although this feature does

not measure the curvature precisely (� and � have the same value), it is

useful when combined with other features.

3. Endpoint feature (f3): This feature de�nes the two endpoints of the segment.

It has one of the following values:

Value Description

0 end point ! end point

1 end point ! branch point

2 branch point ! end point

3 branch point ! branch point

This feature can distinguish between similar segments belonging to di�erent

characters, e.g. the curve in 	
à and the last part of � they are almost identical

except that f3 equals zero and two, respectively.

4. Relative location feature (f4): This binary feature indicates whether the

starting feature point of a segment falls above/below the centroid of the

skeleton and shows this by one/zero. This feature helps deciding whether a

dot is above or below the character which is considered a crucial decision,

e.g. �J and J
.

5. Curved features (f5� f8): These features calculate the percentage of pixels

above the top feature point, below the bottom feature point, left of the left-

most feature point and right of the right-most feature point of that segment.

The importance of these features are noticed when considering character

such as ø

and º.

BMVC99

425

British Machine Vision Conference 5

Letter

Letter

Letter

Figure 2: HMM topology .

4 Hidden Markov Models

4.1 De�nition

The proposed method is based on a Hidden Mark ov Model [11]. An HMM ma y

be represented by the parameter �(�;A;B), where :

� = f�i = P (qi at t = 1)g, initial state probability.

A = faij = P (qj at t+ 1jqi at t)g, state transition probability.

B = fbi(k) = P (vk at tjqi at t)g, observation symbol probability in state i.

T = length of observation sequence.

N = number of states in the model.

M = number of observation symbols.

Q = fqig 1 � i � N , states.

V = fvig 1 � i �M , discrete set of possible symbol observations.

4.2 HMM Implementation

In this paper, we build only one model for all the words in the lexicon and use

di�erent paths, state sequences, to distinguish one pattern from the others. A

pattern is classi�ed to the word which has the maximum path probability over

all possible paths. This approach is called path discriminant HMM [5]. A state

may signify only one segment, and this segment represents a complete character

(X), a fraction of a complete character, or touching characters (A
�
¿). Accordingly,

we did not use any optimisation criterion, such as the maximum likelihood (ML)

[11]. The reason is that optimisation criteria produce a better model but do not

preserve the correspondence of the states to individual characters which yields a

lower recognition rate.

The HMM is formed from ergodic, fully connected, elemen tary units, as shown

in Fig.2 . Each elementary unit represents a letter and is structured as a left-to-

right HMM. As previously men tioned, a letter is decomposed into a number of

BMVC99

426

British Machine Vision Conference 6

segments. This number determines the number of states in an elementary unit.

An important step to put the HMM in practice is to estimate the model's

parameters, but �rst we directly derive the dictionary statistics from the lexicon

Initial� =
No. of words starting with letter �

Total number of words in the lexicon
(2)

Trans�!� =
No. of transitions from letter � to letter �

Total number of transitions from letter �
(3)

The initial state probability is computed as

�i =

�
Initial� If i is the 1st state in the elementary unit �

0 Otherwise

The state transition probability is calculated as

aij =

8>>>><
>>>>:

Trans�!� i is the last state in letter �

& j is the 1st state in letter �

0 i & j are middle states in di�erent letters

0 i & j are in the same letter, i�j

P (qj at t+1j qi at t) i & j are in the same letter, i<j

In our implementation, we use VQ to generate the symbol probabilities. VQ

partitions the training samples into several classes in the Euclidean space using

the K-means clustering algorithm. The sym bol probability can be calculated as

bi(k) =
No. of times in state i and observing symbol vk

Total number of times in state i
(4)

Each word is represented by at least one path through the HMM. There are

several possible ways to �nd the optimal state sequence associated with the given

observation sequence. W e use a modi�ed form of the Viterbi algorithm [11] for

�nding the optimal path and some near-optimal paths. This procedure is stated

below:

1. Initialisation 1 � i � N

�1(i) = �ibi(o1) (5)

 1(i) = 0 (6)

2. Recursion 1 � i � N; 2 � t � T

�t(i) = max
1�j�N

[�t�1(j)aji]bi(ot) (7)

 t(i) = arg max
1�j�N

[�t�1(j)aji] (8)

3. Termination

P
� = max

1�j�N
[�T (j)] (9)

q
�

T
= arg max

1�j�N
[�T (j)] (10)

BMVC99

427

British Machine Vision Conference 7

Font type Percentage when recognised Percentage when recognised

as the 1st choice among the best 5 choices

Simpli�ed Arabic 74% 97%

Traditional Arabic 68% 94%

Arabic Transparent 72% 95%

Table 2: System recognition rate.

4. Path Backtracking T � 1 � t � 1

q
�

t
= t+1(q

�

t+1) (11)

For the sake of word recognition application, a considerable improvement can

be made if more than just the �rst optimal path is reco vered. The approach is to

extend the � and to another dimension which represents the choice W . Assume

the model in state j at instance t then all the possible �t�1(i; w) are considered

and the W best paths are recorded in t(j; w) with their probabilities in �t(j; w)

where w = 1; 2; :::;W .

5 Experimental Results

Images of the text were captured using a scanner with a resolution of 300 dpi. Each

image passed the four-step processing sequence to be transformed in to a sequence

of observations. First, the thinning algorithmwas applied to obtain the skeleton of

the word, and the centroid of the skeleton was calculated. Secondly, segments were

extracted from the skeleton graph in descending order relative to the horizontal

value of the starting feature point. Then, each segment was transformed into an

8-dimensional feature vector. Thirdly, if two or more segments formed a loop then

those segments were merged together in a single feature vector to be assigned a

curvature value (f2) zero. Finally, VQ algorithm was used to form a codebook.

This was done by partitioning the training samples into several classes. Each class

was then represented by its class centroid. Each codebook symbol represented

one class. The codebook included a total number of 76 symbols. Fig.3 shows an

original image and the results of the �rst three steps of the processing sequence.

Table 2 shows the recognition rate of the proposed system.

To assess the performance of the proposed method an HMM w as trained using a

294-word lexicon. The samples were printed using three di�erent fonts: Simpli�ed

Arabic, Traditional Arabic and Arabic Transparent. Samples used for training

were not used during recognition. Table 3 shows the system output of three

di�erent samples representing the same wordôC
�
C£

�
@. The observation sequence for

each sample di�ers from the others. Where the system output sho ws the same

word more than once, this means the same w ord was recognised by a di�erent

path through the HMM. The HMM was not always able to list the correct word

among the best �ve paths. An example of such a case may be seen in Table 4, in

which a dot is missing owing to a problem with thinning. Sometimes, the HMM

BMVC99

428

British Machine Vision Conference 8

(a) Original (b) Thinned

(c) segment Extraction (d) Loop Extraction

Figure 3: The processing sequence of an image word. The above image is transfered

into the following observation sequence: 15, 24, 2, 4, 1, 4, 2, 10, 2, 1, 30, 47, 15,

31.

Font type Obs. sequence System Output P (�jO)

Simpli�ed Arabic ôC
�
C£@
�

6:30� 10�13

5, 41, 19, 22, 1, 36, 2
�
èC
�
C£@
�

1:67� 10�15

ôC
�
C£@
�

7:60� 10�19

41, 22, 22, 17, 1, 66 ôC
�
C£@
�

2:10� 10�19

ôC
�
C£@
�

1:38� 10�19

Arabic Transparent ôC
�
C£@
�

6:20� 10�12

5, 42, 13, 22, 1, 36, 2
�
èC
�
C£@
�

4:12� 10�15

ôC
�
C£@
�

1:87� 10�18

19, 22, 22, 21, 1, 66 ôC
�
C£@
�

8:44� 10�19

ôC
�
C£@
�

6:68� 10�19

Traditional Arabic õ
	
K
�
A£@
�

8:00� 10�22

6, 36, 19, 22, 1, 19, 2
�
èC
�
C£@
�

1:74� 10�22

ôC
�
C£@
�

7:30� 10�23

19, 2, 48, 22, 6, 1, 68 õ
	
K
�
A£@
�

6:76� 10�23

ôA
�	
KZ @
�

1:94� 10�23

Table 3: System output of three di�erent samples of the word ôC
�
C£@
�

. Observation

sequences are ordered from left-to-right.

BMVC99

429

British Machine Vision Conference 9

Word System Output P (�jO)

A
�
ÓA
�
Ü
�
ß A

�
ÓA
�
Ü
	
ß 1:99� 10�10

A
�
ÓA
�
Ü
	
ß 1:25� 10�10

A
�
ÓA
�
Ü
	
ß 3:12� 10�11

A
�
ÓA
�
Ü
	
ß 1:96� 10�11

ÐA
�
Ü
	
ß 4:34� 10�13

Table 4: An example of a word which was not recognised correctly.

Word System Output P (�jO)
�
éK

	
Y
	
ª
�
K ñ

�
K @
�
XZ �H 3:58� 10�18

�
éK

	
Y
	
ª
�
K 1:67� 10�18

A
�
J.
�
K @
�
XZ �H 3:98� 10�19

�
éK

	
Y 	ª
�
K 1:16� 10�19

�
é
�
K @
�
XZ �H 9:61� 10�21

Table 5: System output of an example word.

throws up a sequence which was not included in the lexicon, as shown in Table 5.

The �rst path ñ
�
K
�
XZ �H is not in the lexicon and it is not even an Arabic word. So,

the second path
�
éK

	
Y 	ª
�
K which is in the lexicon was considered as the �rst option.

The last result concerns generalisation. Although it is di�cult to predict in

advance which untrained words the HMM will recognise, we have found a number

of words recognised by the HMM, but w ere not among the training set nor the

lexicon. An example word is shown in Table 6, and other words include �@�Qª
�
J�@
�

,

h@
�Q��
�
¯@
�
, Qå��. , 	áK. , ZA

�îE. , and ÉÓA
�
«.

Word System Output P (�jO)

H. ñ
�
®
�
K H. ñ

�
®
�
K 9:34� 10�11

�Hñ
�
®
�
K 1:56� 10�11

�Hñ
�
®
�
K 1:07� 10�12

Rñ
�
®
�
K 1:26� 10�13

	
Xñ
�
®
�
K 7:17� 10�14

Table 6: An example of a word which was recognised without a previous training.

BMVC99

430

British Machine Vision Conference 10

6 Conclusion

We have proposed a technique for recognising Arabic words from digitised scans of

script. The technique does not rely on segmentation into characters, but instead

converts the skeletonised script into an observation sequence suitable for an HMM

recogniser. A word model was trained from a 294-word lexicon acquired from a

variety of script sources, and recognition rates of up to 97% were achieved. Future

work will focus on increasing the number of fonts that can be recognised by the

system.

References

[1] B. Al-Badr and S. Mahmoud. Surv ey and bibliography of arabic optical text

recognition. Signal Processing, 41:49{77, 1995.

[2] H. Al-Muallim and S Yamaguchi. A method of recognition of arabic cursive

handwriting. IEEE Trans. on Pattern Analysis and Machine Intelligence,

9(5):715{722, 1987.

[3] H. Al-Youse� and S. Upda. Recognition of arabic characters. IEEE Trans.

on Pattern Analysis and Machine Intelligence, 14(8):853{857, 1992.

[4] A. Amin and J. Mari. Mac hine recognition and correction of printed arabic

text. IEEE Trans. on Systems, Man, and Cybernetics, 19(5):1300{1306, 1989.

[5] M. Chen, A. Kundu, and J. Zhou. O�-line handwritten word recognition

using a hmm type stochastic network. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 16(5):481{496, 1994.

[6] M. Fehri and M. Ben Ahmed. A new approac h to arabic character recognition

in multi-font document. In The 4th International Conference and Exhibition

on Multi-Lingual Computing. Cambridge University Press, 1994.

[7] H. Goraine and M. Usher. Printed arabic text recognition. InThe 4th Inter-

national Conference and Exhibition on Multi-Lingual Computing. Cambridge

University Press, 1994.

[8] R. M. Gray. Vector quantization. IEEE ASSP Magazine, 1:4{29, 1989.

[9] K. Hassibi. Machine-printed arabic ocr using neural networks. In The 4th

International Conference and Exhibition on Multi-Lingual Computing. Cam-

bridge University Press, 1994.

[10] J. R. Parker. Algorithms For Image Processing and Computer Vision. John

Wiley and Sons, Inc., 1997.

[11] L. Rabiner and B. Juang. An introduction to hidden markov models. IEEE

ASSP Magazine, pages 4{16, January 1986.

BMVC99

431

