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Abstract

Normal vectors are of primary importance in reconstructing the surface of the

left ventricle from MR images of the heart. They are fundamental for accurate

measurement of wall thickness, which is a very important parameter in assessing

ventricular function. In this work, we present a novel technique for computing ac-

curate normal vectors. This technique is based on variational calculus. It explicitly

enforces and controls the smoothness of normal vectors along and across outlines.

The computed normal vectors are used to describe the surface of the LV through

the �t of local osculating paraboloids, from which principal curvatures and principal

directions are also computed. Besides being fast and simple, this approach applies

equally well to the right ventricle, and more generally to any surface sampled in

terms of digitised outlines. Extensive experiments are performed using simulated

surfaces, for varying sampling resolution to determine the robustness and accuracy

of the our method. Finally, this method is applied to segmented MR images of the

human left ventricle, and the results are presented.

1 Introduction

This research is part of a project whose primary goal is the development of a

precise method for assessing ventricular function and myocardial viability [3, 4, 6]

based on the evaluation of ventricular geometry, from data obtained from mag-

netic resonance images. Precise functional assessment is crucial in de�ning which

patients are operable and likely to bene�t from cardiac surgery (valvular repair,

revascularisation, and ventricular reduction), thereby guiding decisions that are

critical to patient outcomes. It is also fundamental for determining the right mo-

ment for surgical referral without allowing a deterioration of function that can

jeopardize the result of surgical treatment.

In assessing ventricular function from geometry, accurate information about

wall thickness and principal curvatures [6] are essential. Precise knowledge of nor-
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mal vectors allows measurement of principal curvatures and principal directions,

which yield a detailed assessment of the local in vivo (di�erential) geometry of

the heart. In particular, they yield accurate measurement of wall thickness than

presently used \in plane" methods. The latter do not take into account the incli-

nation of the image plane to the wall. This is especially a problem near the apex

of the left ven tricle [4,7]. The goal of our work is to compute accurate normal

vectors and principal curvatures of the left ventricle walls, from data in the form

of digitised short axis MRI images.

2 Previous work

In order to reconstruct the surface of the left ventrivle (LV), three main techniques

ha ve been proposed in the literature:

1. Model-based techniques, which try to approximate the shape of LVusing

simple analytical objects like spheres, ellipsoids, or cylinders [10]. The latter have

been found to o�er only a coarse approximation, due to their oversimpli�edge-

ometry. More elaborate 3-D surface models ha vebeen proposed. Bending and

stretching models [11], axisymmetrical models [12], and deformable models [13, 8]

are examples of such techniques. The main limitation with these techniques is

that they are better suited for estimating the motion of the wall, rather than mea-

suring parameters such as principal curvatures and principal directions, and wall

thic kness.

2. Surface-based techniques that compute directly the parametrisation of the

w all surfaces from segmented data [5]. P olynomials are generally used to approx-

imate surfaces. Curvature measures are functions of the partial derivativ es of the

approximating polynomials.

3. Normal vectors-based techniques that �rst compute normal vectors, and

then deduce the local parametrisation of the surface [3]. In [3], the normal vec-

tors, together with the directions of principal curvature, are computed from the

osculating paraboloid that locally approximates data from outlines. The osculat-

ing paraboloid is estimated using Newton's method to re�ne an initial estimate. A

major drawback of this technique is its inability to correctly approximate principal

curvature in the orthogonal direction to the outlines, because equal importance is

given to points from neighboring stacks. A further limitation with this technique is

its ine�ciency. Indeed, the osculating paraboloid is computed for each iteration of

the Newton's method. F urthermore, there is no local coherence,i.e., neighbouring

normal vectors may not vary smoothly along and across outlines.

To overcome the above mentioned problems, we have developed a novel tech-

nique for computing accurate and coherent normal vectors of the LV from seg-

mented MR images: A robust and accurate initial approximation of normal vec-

tors [9], is follow ed b y an iterative scheme for re�ning initial normal vectors, while

enforcing the smoothness constraint across and along outlines. The degree of

smoothness is explicitly controlled.
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3 Our approach
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Fig. 1. A set of arti�cial out-

lines f� � �Oi�1; Oi; Oi+1 � � �g represent-

ing segmented MR images of the left

ventricle.
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Fig. 2. ~t1, and ~t2 are the tangent

vectors to the curves C1 and C2 at

P .

Assume a globalX-Y-Z coordinate system and a set of outlines, resulting from

the segmentation of MR images of the heart as in Fig. 1. Each outline Oi is a set

of point triplets Pi(x; y; z). Let P 2 Oi be a point of interest at which we wish to

compute the normal vector ~n.

3.1 Surface normals

Let S be a surface, and ~N be a unit normal vector �eld to S. It can be easily

shown that if S is smooth, then locally at a point P , S is of the form F (x; y; z) = 0

where F (x; y; z) is a C1 function, and that ~N (P) ( ~N at P ) is either rF
krFk

, or

�rF
krFk

. It follo ws that the unit normal vector �eld ~N is smooth. Locally, near P ,

the surface S can also be parameterized as S(u; v) = (X(u; v); Y (u; v); Z(u; v)).

Then ~N is given by:

~N =
@S
@u

� @S
@v

k@S
@u

� @S
@v
k

(1)

We denote the components of ~N by p(u; v); q(u; v), and r(u; v).

Equation (1) expresses the fact that the cross product of the velocity vectors

along any tw o curves on the surface S and passing through a point P , is collinear

to the normal ~N (P ) to S at P . F or �xed curves C1 and C2, let ~t1 and ~t2 be the

velocity vectors of C1 and C2 at P (see Fig. 2). Let ~n= ~N (P ), then equation (1)

can be rewritten as:

k~n�
~t1 � ~t2

k~t1 � ~t2k
k2 = 0 (2)

Writing ~n= (p; q; r)t, where p2+ q2 + r2 = 1; equation (2) can be rewritten as

follo ws:

(p� a)2 + (q � b)2 + (r � c)2 = 0 (3)
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where a; b, and c are computed from the tangents ~t1 and ~t2 at P to the curves C1

and C2. F or our purpose,C1 is tak en to be the outline Oi to which P belongs,

and C2 is taken to be the circle that goes through point P and its tw oclosest

points from neighboring outlines Oi�1 and Oi+1. Note that this curve does not

necessarily lie on the surface. How ev er, it is expected to be a good approximation,

especially if the inter-outline distance � is small.

If we de�ne a function R(p; q; r) = 1� ap� bq � cr, then (3) yields:

R(p(u; v); q(u; v); r(u; v)) = 0 (4)

3.2 Smoothness constraint

We assume that the left ven tricle is made up of piecewise smooth surfaces which

depart from the smoothness assumption only along sets of small measure. Let P

be a point of interest, and ~n = (p; q; r)t the normal vector to the left ven tricle

surface at P (see Fig. 1). F romSection 3.1, a smooth surface is characterized

by continuously varying normals, or similarly the gradients of p, q and r beeing

small. Thus if pu; pv; qu; qv ; ru; and rv represent the partial derivatives of p, q and

r, we can specify the smoothness constraint as minimizing the integral of the sum

of the squares of these partial derivatives as follo ws:

es =

Z Z
[(p2u + p2v) + (q2u + q2v) + (r2u + r2v)]dudv (5)

This integral must be minimized subject to the constraint given in (4). How-

ever, to account for noise, the problem is posed as that of minimizing total error

e giv en b y

e = es + �et (6)

where � is a carefully chosen control parameter which weighs the error in smooth-

ness constraint relativ e to the error in the surface tangents equation (4) given

by

et =

Z Z
R2(p; q; r)dudv (7)

3.3 The algorithm

Minimizing the error in (6) is a well known problem in variational calculus applied

to computer vision [2], and the solution of which is the following iterative scheme

for updating the value of (p; q; r):

p
(n+1)

ij = p
(n)

ij + �R(p
�(n)

ij ; q
�(n)

ij ; r
�(n)

ij )
@R

@p
(8)

q
(n+1)

ij = q
(n)

ij + �R(p
�(n)

ij ; q
�(n)

ij ; r
�(n)

ij )
@R

@q
(9)

r
(n+1)
ij = r

(n)
ij + �R(p

�(n)
ij ; q

�(n)
ij ; r

�(n)
ij )

@R

@r
(10)

where � denotes the average values computed in a m�m neighborhood, and the

subscripts i; j denote discrete positions near the point P .
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3.4 Choice of a v eragingneighborhood

T o further control smoothness along and across outlines, the following weighs are

adopted when compting p
�(n)
ij ; q

�(n)
ij , and r

�(n)
ij .

2
4

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

3
5

These weights are used so that closer points to the point of interest contribute

more to the smoothing. These weights can be changed to re
ect con�dence in

points from outlines especially when inter-slice gap � is small.

3.5 Computing surface geometry

Using the normal vectors computed in Section 3.3, the steps for computing the

main curvature features (or equivalently surface geometry), namely the principal

curvature directions and their corresponding principal curvatures are as follows:

1. construct a local orthogonal coordinate system ~x� ~y� ~n where ~n is the

normal to the surface at the point P under focus.

2. translate the points in the neighborhood of P from the global original coor-

dinate system to the new coordinate system.

3. compute the parameters of the osculating paraboloid (11) at P . This is

posed as �nding the parameters of the paraboloid (11) that best �ts the set

of neighboring points, in a least square sense.

z = Ax2 +By2 + 2Cxy +Dx+Ey +G (11)

The principal curvatures at a point P are given by:

k1 = A+B +
p
(A�B)2 + 4C2; k2 = A+B �

p
(A�B)2 + 4C2 (12)

and the principal directions by the normalization of the vectors:

~f1 =
2C

k1 � 2A
~i+~j ; ~f2 =

2C

k2 � 2A
~i+~j (13)

where~i and ~j are the unit vectors along the positive ~x and ~y directions; A, B, and

C are parameters of the osculating paraboloid (11)

4 Evaluation of the technique

Ellipsoids, elliptic paraboloids, and hyperboloids of one sheet are used to test the

this tec hnique:

x2

a2
+
y2

b2
+
z2

c2
= 1; z = ax2 + by2 a > 0; b > 0;

x2

a2
+
y2

b2
�
z2

c2
= 1
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These shapes are used because they provide good test cases for positive and

negative Gaussian curvatures. Zero Gaussian curvature is of little relevance for

this study . Outlines are constructed by sampling points from these surfaces at

various inter-slice thic kness�.

F or various values of �, average, minimum and maximum angle di�erences

(in degrees) between computed and theoretical normals, together with standard

deviations are computed. F urthermore, the average percentage di�erence (14)

betw een principal curvatures of the osculating paraboloids and the theoretical

principal curvatures, together with standard deviations, are computed.

%Dtavg =

p
(k1 � k1th)2 + (k2 � k2th)2p

k21th + k22th
� 100 (14)

5 Results

For the experiments presented below, the CPM method [9] has been used to com-

pute initial normals. The parameter � which weighs the error in smoothness

constraint relativ e to the error in the surface tangents has been �xed to � = 0:001.

F or eac h surface type, three main results are presented, namely:

1. a table summarizing the results obtained for computing normals using our

technique (VCM). These results are compared to the CM method from [9].

2. a table summarizing the results obtained after computing curvatures for various

neighboorhood sizes N .

T able1 summarizes the results obtained for the ellipsoids (a = b = 30; 40 and

50 mm, and c = 90 mm). The total average error in the angle,Etavg (in degrees),

and the standard deviation � are computed over all outlines of the ellipsoids.

� 9 mm 10 mm 12 mm

Etavg � Etavg � Etavg �

CM 0.17 0.22 0.21 0.26 0.25 0.30

VCM 0.00 0.00 0.00 0.00 0.00 0.00

T able1. T otalaver age error Etavg and standard deviations � in degreesfor the

Circles Method (CM) and the Variational Calculus Method (VCM), on ellipsoids

(a = b = 30; 40; 50 mm and c = 90 mm), for di�erent inter-slice thicknesses �.

T able2 summarizes the results obtained for the ellipsoids (a = b = 30; 40 and

50 mm, and c = 90 mm) and di�erent neighborhood sizes N . The total average

percentage di�erence, %Dtavg , and the standard deviation � are computed over

all outlines of the ellipsoids. Fig. 3 displays the normal vectors obtained by VCM

for the ellipsoid (a = b = 40 mm and c = 60 mm).
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Fig. 3. Normal vectors obtained by VCM for the ellipsoid (a = b = 40 mm and

c = 60 mm).

� 9 mm 10 mm 12 mm

N %Dtavg � %Dtavg � %Dtavg �

9 1.07 0.20 1.17 0.33 1.47 0.92

15 0.72 0.12 1.00 0.31 1.22 0.43

21 1.86 1.05 1.96 0.89 2.01 1.13

T able2. T otalaver age percentage di�erence %Dtavg and standard deviations �,

on the ellipsoids (a = b = 30; 40; 50 mm and c = 90 mm), for di�erent inter-slice

thicknesses �, and di�erent neighborhood size N .

T able3 summarizes the results obtained for the elliptic paraboloids (a = b =

0:2; 0:3 and 0:4 mm). The total average error in the angle,Etavg (in degrees), and

the standard deviation � are computed over all outlines of the elliptic paraboloids.

� 9 mm 10 mm 12 mm

Etavg � Etavg � Etavg �

CM 0.14 0.17 0.15 0.19 0.16 0.22

VCM 0.00 0.00 0.00 0.00 0.00 0.00

T able3. T otalaver age error Etavg and standard deviations � in degreesfor the

Circles Method (CM) and the Variational Calculus Method (VCM), on the elliptic

paraboloids (a = b = 0:2; 0:3; 0:4 mm), for di�erent inter-slice thicknesses �.

T able4 summarizes the results obtained for the elliptic paraboloids (a =

b = 0:2; 0:3 and 0:4 mm) and di�erent neighborhood size N . The total average

percentage di�erence, %Dtavg , and the standard deviation � are computed over

all outlines of the ellipsoids. Fig. 4 displays the normal vectors obtained by VCM

for an elliptic paraboloid.
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� 9 mm 10 mm 12 mm

N %Dtavg � %Dtavg � %Dtavg �

9 0.97 0.11 1.02 0.20 1.31 0.42

15 0.61 0.08 0.73 0.31 0.96 0.39

21 1.02 0.31 1.12 0.51 1.47 0.88

T able4. T otalaver age percentage di�erence %Dtavg and standard deviations �,

on the elliptic paraboloids(a = b = 0:2; 0:3; 0:4 mm), for di�er entinter-slic e

thicknesses �, and di�erent neighborhood size N .

Fig. 4. Normal vectors obtained by

V CM for the elliptic paraboloid (a =

b = 0:2 mm).

Fig. 5. Normal vectors obtained

by VCM for the hyperboloid of one

she et (a = b = 40 mm and c =

60 mm).

T able5 summarizes the results obtained for the hyperboloids of one sheet

(a = b = 30; 40 and 50 mm, and c = 90 mm). The total average error in the

angle, Etavg (in degrees), and the standard deviation � are computed over all

outlines of the hyperboloids of one sheet.

� 9 mm 10 mm 12 mm

Etavg � Etavg � Etavg �

CM 0.06 0.05 0.07 0.05 0.08 0.06

VCM 0.01 0.00 0.01 0.00 0.01 0.00

T able5. T otalaver age error Etavg and standard deviations � in degreesfor the

Circles Method (CM) and the V ariationalCalculus Method (VCM), on the hy-

perboloids of one sheet (a = b = 30; 40; 50 mm and c = 90 mm), for di�er ent

inter-slic e thicknesses�.

T able6 summarizes the results obtained for the hyperboloids of one sheet

(a = b = 30; 40; 50 mm and c = 90 mm) and di�erent neighborhood size N .

The total averagepercentage di�erence, %Dtavg , and the standard deviation �

are computed over all outlines of the ellipsoids. Fig. 5 displays the normal vectors

obtained by VCM for a hyperboloid of one sheet.
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� 9 mm 10 mm 12 mm

N %Dtavg � %Dtavg � %Dtavg �

9 0.82 0.21 0.99 0.71 1.07 0.62

15 0.79 0.32 0.81 0.70 1.00 0.27

21 1.13 0.87 1.32 0.81 1.58 0.43

T able6. T otalaver age percentage di�erence %Dtavg and standard deviations �,

on the hyperboloids of one sheet (a = b = 30; 40; 50 mm and c = 90 mm), for

di�er ent inter-slice thicknesses �, and di�erent neighborho od size N .

6 Discussion

The results show that for realistic in ter-slice thicknesses (2mm � � � 12mm),

the proposed method outperforms CM. It computes normal vectors accuretely up

to a precision of 1/100 th. for all types of curvatures (negative and positiv e).

Moreover, the iterative scheme upon wich this technique is built converges rapidly

(betw een 10 and 50 iterations depending on the control parameter �, which cor-

responds to at most 2 mn real time on a shared Sparc 1000 server), and principal

direction curvatures are computed with an error %Dtavg 2 [0:61::1:86]� 1:12 for

interslice-thic knesses� � 12mm. As expected, this error decreases for smaller

interslice-thic knesses.As far as size of the neighborhood used for computing cur-

vature information is concerned, it appears that N = 15 is the optimal value

for all interslice thiknesses. Larger values would cause far aw ay points to a�ect

the accuracy of the computations. Smaller values would mean that not enough

information is provided for computing the osculating paraboloid model.

Fig. 6 shows the normal vectors gotten for a real heart outlines.

Fig. 6. Normal vectors obtained by VCM for the outlines of a real heart.

7 Conclusions

Enforcing smoothness along and across outlines resulted in a signi�cant improve-

ment in computing normals and principal curvatures. The V ariational Calculus
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Method (V CM)presented in this paper gives accurate results when tested with

known geometrical shapes. Besides being fast and simple, this approach applies

equally well to the right ven tricle, and more generally to any surface sampled in

terms of digitised outlines.
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