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Abstract

There have been several approaches to the classification of texture in images.
Most approaches will take certain local attributes or features into account and
base the classification on these measures. In here we demonstrate the use of a
statistical approach to separate the structure and texture background present
in images. Modelling is based on normal images which only contain a texture
background. The resulting model is applied to images which contain abnor-
mal image structures as well as a normal texture background. Especially for
mammographic (and other medical application) this can provide useful in-
formation which can be used as a pre-processing tool to obtain the structures
present in the image and at the same time get a robust classification of the
background texture.

1 Introduction

The UK Breast Screening Programme alone generates 1.5 million mammograms per an-
num. Potential malignancies can be detected from subtle abnormalities in radiographic
appearance but it is known that radiologists fail to detect a significant proportion of these
abnormalities. It has been shown that their performance would improve if they were
prompted with the locations of possible abnormalities [10].

Mammographic parenchymal tissue can be divided into a number of classes. These
classes (e.g. Wolf grades [9]) are used by radiologists for the assessment of risk in mam-
mographic images. Methods to automaticly classify the tissue in the same risk classes
have only had limited success [6]. However, of the used approaches the most successful
have in common the assumption that fractal measures can be used for the classification of
the background texture.

Besides the background texture, image structures (both linear and blob-like) can carry
information about possible mammographic abnormalities. See Fig. 1b for an example of
a patch of a mammographic image containing a cluster of micro-calcifications. Linear
structures (spicules, vessels, ducts, etc.) can be detected by various methods [11]. This is
also the case for blob-like structures (masses and micro-calcifications) [8, 10]. However,
it is possible that these structures (normal and abnormal) cause confusion when trying to
classify the background texture. Therefor a separation of the background texture and the
image structures could make the texture classification stage more robust.
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We propose a method, based on the information contained in Fourier space, which
will capture the texture information and at the same time will separate the image struc-
ture from the background texture. Effectively the described approach is a form of image
preprocessing to enhance the structures present in the images and to reduce the effects of
background noise. Other methods to enhance the structures in images are well known [5].

(a) (b)

Figure 1: (a) Synthetic and (b) mammographic examples of images that contain abnormal
structures and normal texture background. For the synthetic image the abnormalities are
within the circle and for the mammographic example the abnormalities can be found as
brighter blobs along the linear structure which extends approximately as x = �y.

2 Fourier Space Revisited

There is a direct link between the information contained in Fourier space and between the
fractal model which describes the texture in the image. A short description of the Fourier
space theory [1] and the relation with fractal descriptors [7] is given. The discrete Fourier
transform F (�; �) of the function f(x; y) is given by

F (�; �) =

XX
f(x; y)e

�{2�(x�+y�)=N (1)

Here the coordinates (x; y) refer to the spatial frame (i.e. the real world image) and (�; �)
to the frequency frame. It should be clear that the resulting function F is a complex
function (indicated by the { in Eq. 1). Because the function f is a real function (no
imaginary part) the real part of F is even and the imaginary part of F is odd (F is an
Hermitian function).

2.1 Fractal Modelling

If the information contained in the function f(x; y), which is the image, can be described
as being fractal the power spectrum is given by [7]

P (�; �) = F (�; �)F
�

(�; �)

= (reF + imF {)(reF � imF {)

/ (�
2
+ �

2
)
��

; (2)
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where � is related to the Hausdorff dimension for fractal structures and reF and imF

represent the real and imaginary part of the Fourier transform F . For most images Eq. 2
is an approximation (which might only be correct over a limited spectral range, or a series
of ranges all with their own local Hausdorff dimension).

Our hypothesis is that this approach to image (texture) modelling can be used to sepa-
rate the (non-fractal) structures in the image from the (fractal) background. To achieve this
an approximation of the original power spectrum P (�; �), which is indicated by P 0

(�; �),
is used to reconstruct the original image by transforming reF taking the original imF and
Eq. 2 into account. The transformed reF is indicated by reF

0 and is given by

jreF
0

j =

p
P 0(�; �)� imF 2 (3)

After this reconstruction the information in reF
0 and imF are used in an inverse

Fourier transform operation to obtain a reconstruction of the original image. Even though
it was suggested previously that the imaginary part of F does not carry any significant
information for texture classification [2], the above described approach does not results in
a robust and satisfactory separation of the image structures and the background texture.
As imF was not changed the original image was almost perfectly reconstructed [2].

2.2 Statistical Modelling

In the previous section it was suggested that the fractal texture information can be sep-
arated from the overall image through reconstruction of the real and imaginary part in
Fourier space. However, the need to change both reF and imF (else reconstruction is
almost perfect) makes a direct approach (as described above) not possible. To obtain an
approximation of both reF and imF we have investigated the use of principal component
analysis with respect to the information in Fourier space.

Principal component analysis (PCA) is a well documented statistical approach to data
dimensionality reduction [4]. The principal components of a population of observation
vectors are the characteristic vectors of the covariance matrix (C!j

) constructed from the
population. Projecting the data into its principal components generally results in a com-
pact and meaningful representation in which the first few characteristic vectors describe
the major modes of data variation. The characteristic values provide the variances of the
principal components. Data dimensionality reduction is achieved by ignoring those prin-
cipal components which have zero or small characteristic values. Observation vectors (in
this case the reF and imF information in the Fourier domain) can be approximated from
a PCA model using (4).

xi � P!j
bi +m!j

(4)

where xi is the ith observation vector,m!j
is the mean observation over the population,

P!j
is the matrix of the most significant characteristic vectors and bi is a vector of lower

dimensionality than xi (hence the approximation sign). The weights of the principal
components (bi) for an observation (xi) can be estimated (since P�1

!j
= P

T
!j

) by

bi = P
T

!j
(xi �m!j

) (5)

Observation vectors can be reconstructed by substituting (5) into (4).
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3 Artificial Images

To investigate the proposed approach to the separation of the structure and texture in
images synthetic images were generated which either contained a (normal) fractal texture
or a fractal texture in combination with a cluster of (abnormal) blob-like structures. A
typical example of a abnormal synthetic image is shown in Fig. 1a.

The PCA model was based on a large number (N � 1000) of grey-level normalised
sections (the regions of interest which were 32� 32 pixels in size) extracted from normal
synthetic images. For each region of interest the 10

log of reF and imF in Fourier space
were determined. To obtain orientation independent results the extracted sections were
rotated through an angle of �=2 radians four times and all four samples were used.

With the available information there are to possible approaches. Firstly it is possible
to combine the information provide in reF and imF and build one observation vector for
the PCA model. However, it is also possible to build two individual PCA models, one
based on reF and the second based on imF .

3.1 Combined reF and imF PCA Model

The combination of the reF and imF information from the Fourier domain results in an
observation vector which has 2048 dimensions. The resulting PCA model needs 1021
components to describe this data (the reduction by a factor of two is expected as the
Fourier domain is rotational symmetric). To describe 25% of the data variation 5 principal
components were needed and to describe 75% of the data variation close to 300 principal
components were necessary. The effect of the first three principal components and the
mean of reF and imF are shown in Figs 2 and 3, respectively.

Figure 2: The mean (left image) and first three (from left to right) principal components
(�2 standard deviations) of reF for the PCA model based on the combined information
from reF and imF .

The results in Fig. 2 indicate several effects. The first principal component indicates
rotational aspects whilst the second and third principal components indicate the presence
of horizontal and vertical structures in the image, respectively. No variations in the in-
tensity were expected as the regions of interest were normalised with respect to the local
grey-level distribution. The mean of reF is almost a delta function. These effects are
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Figure 3: The mean (left image) and first three (from left to right) principal components
(�2 standard deviations) of imF for the PCA model based on the combined information
from reF and imF .

supported by the results shown in Fig. 3, but in this case the mean of imF is almost a flat
response.

3.2 Separate reF and imF PCA Model

The individual use of the reF and imF information from the Fourier domain results in
two PCA models. each based on observation vectors which have 1024 dimensions (and
512 components to describe this data). To describe 25% of the data variation 5 principal
components were needed and to describe 75% of the data variation close to 180 principal
components were necessary. The effect of the first three principal components and the
mean of reF and imF are shown in Figs 4 and 5, respectively.

Figure 4: The mean (left image) and first three (from left to right) principal components
(�2 standard deviations) of reF for the PCA model based on the reF information.

The results in Fig. 4 indicate several effects. The first principal component indicates
rotational aspects whilst the second and third principal components indicate the presence
of horizontal and vertical structures in the image. The mean of reF is almost a delta
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function. Again, these effects are supported by the results shown in Fig. 5 and also in this
case the mean of imF is almost a flat response.

It must be pointed out that there are subtle differences between the modelling based
on the combined and separated reF and imF parts of the Fourier space information.

Figure 5: The mean (left image) and first three (from left to right) principal components
(�2 standard deviations) of imF for the PCA model based on the imF information.

3.3 Pixel Classification

The models described in the previous sections were used to obtain a pixel classification
for images containing abnormal structures (see Fig. 1a). Reconstruction of reF and imF

was based on 25% or 75% of the data variation and reconstruction of the image shown in
Fig. 1a are shown in Fig. 6.

(a) (b)

Figure 6: Reconstructed images (see Fig. 1a) based on (a) 25% and (b) 75% of the data
variation with the PCA modelling based on the individual aspects of reF and imF .

The reconstructed image, which should only contain the normal texture background
(this is the case for Fig. 6a, but some abnormal structure is left in Fig. 6b) can be sub-
tracted from the original image. The resulting image should only contain the abnormal
structures. If some of the structure is still present in the reconstructed image the resulting

BMVC99

367



difference image can have concave areas were the abnormal structures were present. Re-
ceiver operating characteristic curves can be used to obtain a direct comparison between
the original and the resulting normal images with the assumption that the reconstructed
normal image should contain less (i.e. harder to detect) of the abnormal structures. This
is done by a simple threshold applied at various intensities. The results for individual
PCA models based on reF and imF of such an approach are shown in Fig. 7.
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Figure 7: ROC results for the detection of the abnormal structures where: 4: original
image, 3: reconstruction based on 75% PCA modelling, and 2: reconstruction based on
25% PCA modelling.

The results shown in Fig. 7 indicate that the reconstruction might be beneficial for
texture classification purposes as some of the abnormal structure has been removed and
is more difficult to detect. Decreasing the number of principal components has the effect
of making it more difficult to detect the abnormal structures.

When comparing the two approaches to building PCA models it is clear that the over-
all description of the resulting models are very similar, with the first few principal compo-
nents describing orientation effects and the presence of horizontal and vertical structures
in the images. The ROC results are as well virtually independent of the modelling ap-
proach taken. From this point of view it might be beneficial to use the modelling based
on the individual information contained in reF and imF , as this results in a significant
reduction in the size of the model ((2N)

2
) 2(N)

2).

4 Mammographic Images

One of the application areas within mammographic screening would be the pre-processing
of mammographic images with the purpose of separating out the abnormal structures from
the normal texture background. In Figure 1b a section of a mammographic image is shown
which contains a cluster of micro-calcifications. In the remainder of this section we will
endeavour to separate out the micro-calcifications from the normal background (although
care has to be taken as the surrounding tissue might be affected by the presence of ab-
normalities and no clear separation might be possible). Based on the results presented in
Sec. 3 we will only use PCA modelling based on the individual information contained in
reF and imF .
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4.1 PCA Modelling

Two separate PCA models were build for the reF and imF information based on mam-
mographic images containing no abnormal structures (although it must be emphasized
that some normal structures, which can be very similar in appearance to abnormal struc-
tures, were present). The resulting PCA models showed similar effects as were shown
in Sec. 3 for the synthetic images, with the first few principal components covering rota-
tional and horizontal/vertical predominance aspects. One of the differences between the
synthetic and mammographic modelling was the number of principal components needed
to describe a certain percentage of the data variation. For the mammographic data to
describe 25% of the data variation 50 principal components were needed and about 300
principal components were needed to describe 75% of the data variation. This indicates a
less even distribution in Fourier space as was the case with the synthetic examples.

4.2 Pixel Classification

The PCA models can be applied to mammographic images containing abnormal struc-
tures. (as shown in Fig. 1b). The reconstructed images resulting from such an approach
based on 25% and 75% of the data variation are shown in Fig. 8.

(a) (b)

Figure 8: Reconstructed images (see Fig. 1b) based on (a) 25% and (b) 75% of the data
variation with the PCA modelling based on the individual aspects of reF and imF .

These images show that some of the abnormal structures present have not been re-
moved. This is a large difference with the synthetic experiments described in Sec. 3.
However, it can be explained by the fact that the normal images in the synthetic experi-
ments did not contain any abnormal structures, whereas for the mammographic experi-
ments there are structures in the normal images used for building the PCA model that are
very similar to the abnormal structures we are trying to remove. The failure to remove the
abnormal structures is confirmed with an ROC analysis which is shown in Fig. 9. This
even shows that the described approach can be used as a pre-processing step to enhance
the abnormal structures, exactly the opposite of what was expected (although it must be
mentioned that the effects are not very large).
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Figure 9: ROC results for the detection of the micro-calcifications where: 4: original
image, 3: reconstruction based on 75% PCA modelling, and 2: reconstruction based on
25% PCA modelling.

5 Discussion and Conclusions

We have shown that in principle the described approach can be used to separate abnormal
structures and normal background texture in images. However, these positive results were
based on synthetic data with far less convincing results based on real mammographic data.
The main reason for this would be the presence of normal structure in the training images
which were very similar to the abnormal structures we were trying to remove. This will
need further investigation. For the mammographic data reducing the number of principal
components to less than 50 (covering less than 25% of the data variation) might be an
option.

For mammographic risk assessment the resulting reconstructed images can be used
and a comparison with texture classification based on the original images will be investi-
gated.

Care has to be taken because the statistical modelling applied here uses a one dimen-
sional (1D) vector to describe two dimensional (2D) information. As soon as the 2D

information is transformed to a 1D vector the spatial relations which are clear and closely
connected in 2D space might be less well-defined and no longer connected in the 1D

case. These non-linear aspects are currently under investigation for local pixel signature
descriptions [3].

One of the other drawbacks of the proposed method is that to obtain a robust local
description in the Fourier domain the size of the local regions of interest have to be suf-
ficiently large. However, an increase in the size of the region of interest will result in an
increase in the size of the PCA model (effectively the size of the covariance matrixC!j

).
This means that it becomes problematic (with respect to memory aspects) when a region
of interest size of larger than 32� 32 is needed. Some enlargement of this region might
be possible depending on how the reF and imF are used in the PCA model. We are
also investigating novel methods to obtain a more compact description to start of with so
larger regions of interest can be used for texture classification purposes. The reduction
of the data-volume is one of the main priorities and we are investigating methods which
will reduce the amount of data used for modelling without a major degradation of the
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information that is described by the data.
A more compact model could have been obtained when the rotational symmetry of

the Fourier domain had been taken into account. However, this would only reduce the
data-volume by a factor of four (or increase the size of the regions of interest by a factor
of two).

An alternative to the modelling of the data which has not been covered in the current
document is the option to extract the amplitude and phase information from the Fourier
transform information. This might be a more robust route and does fit in more appropriate
with the theory suggested in Sec. 2.1.

In summary, we have described initial results for a method which shows the poten-
tial of separating out the structures and texture background present in images. The novel
approach showed promising results based on synthetic images, but results based on mam-
mographic data was less convincing. Additional work will be needed to fully investigate
these aspects. A method like this could be used to improve the robustness of texture
classification for risk-assessment in mammographic images.
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