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Abstract

A non-invasive system for monitoring fish underwater is described. A 3D
point distribution model (PDM) model can be fitted on stereo images for fish
examination. Currently the model fitting algorithm requires manual
initialisation. Therefore experiments were carried out to investigate the
usefulness of an n-tuple classifier as a tool to initiate the model fitting
method automatically. The experiments were designed to identify factors
that will affect the performance and the usefulness of the classifier under the
requirements of the fish inspection application. Experimental results show
that the classifier is a useful tool for interpreting underwater fish images and
could be used as a tool to aid the application in question.

1 Introduction
Knowledge of the status of the salmon stocks in a fish farm is essential for farmers to
manage their farm efficiently. However, current fish stock examination procedures are
labour intensive and most importantly, cause physical damage and physiological stress
to the fish. The damage that is caused by the inspection process will affect the health,
appetite and even lead to death of the stock. Therefore it is a very desirable idea to
have a non-invasive, stress-free monitoring system that will allow the farmers to
examine their stock while they are still underwater.

A system that was designed to meet these needs has been described by Beddow et al
[1], Chan et al [2], Hockaday et al [4] and Ruff et al [7]. The system utilised an
underwater stereo vision system, that would allow real world lateral length
measurements to be extracted from a fish in the stereo images. Therefore biomass or
other information concerning the stock can be derived.

One aspect of the system consisted of a model fitting procedure for a 3D Point
Distribution Model (PDM) [5], which could be used to extract the lateral length
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measurement automatically from the images without extensive user interaction to
locate individual landmark points on the fish.

However, as described by Chan et al [3], there are certain limitations associated with
the current fitting procedure. Therefore experiments on using an n-tuple classifier to
overcome some of the limitations associated with the PDM fitting algorithm have been
carried out by the authors. Provisional results shows that the n-tuple classifier has a
great potential for speeding up the whole estimation process by it's unique
characteristic of flexibility, simplicity and efficiency of execution.

This paper will first give a brief overview of how salmon biomass could be estimated
using underwater stereo imaging techniques. Secondly a short review of the n-tuple
classifier, which is based on the WISARD architecture [8] and how it can be fitted into
the frame work of the salmon biomass estimation project will be described. Finally
experiments are described on how the performance of the classifier is tested according
to the requirements of the application and how well the n-tuple classifier can be used
as a tool for aiding the PDM fitting process.

2 Measuring Fish Using an Underwater
Stereo Imaging System
A non-invasive method for monitoring salmon stock in a fish farm is proposed by
Beddow et al [1]. The system Beddow et al suggested consisted of the use of stereo
imaging techniques combined with salmon morphology to extract important
information about the stock in the salmon farm. Further suggestions were also made
by Chan et al [2] to utilise a 3D Point Distribution Model (PDM) that was developed by
McFarlane et al [5]. Chan suggested that the lateral measurements of fish in a stereo
image could be extracted automatically using the unique properties of the PDM, the
landmarks points on the model, to represent the truss network (figure 1) that is vital for
any estimation to be made on the fish.

However, the authors [3] have also discussed the draw backs that are associated with
the current implementation of the 3D fish PDM and the quality of images captured in
the variable underwater environment.

The problem that is associated with the current PDM fitting algorithm, is that it will
require user interaction to locate roughly the position of the fish in the image before
the model fitting procedures can be commenced. This is a very labour intensive job
and it will be beneficial if this procedure can be automated. Another major challenge
that concerns this application is the variability of the underwater environment. Figure
2 is a stereo image pair that was captured in a fish farm on the Western coast of
Scotland. The image pair shows how the images of the same scene vary with different
camera positions. The image quality is further affected by water clarity, lighting
condition of the environment and suspended particles present in the water. Due to the
complexity of the underwater environment, simple image segmentation techniques
such as thresholding and edge detection will not perform well under such variable
conditions. High-level and more complex segmentation techniques can be employed
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for this task, however these methods will often required large amount of computation
resources.

The authors have suggested the problems could be overcome by the use of an n-tuple
classifier, which is based on the implementation of the WISARD architecture [8].
Provisional experimental results are promising and further experimental results have
shown that the classifier could be used to solve the problems in question.

3 Image Segmentation
The grey level image in figure 2 is too complicated for the classifier to be applied to.
Therefore the images are first segmented and a binary image is produced as shown in
figure 3. The segmentation process is based on simple image subtraction and
thresholding algorithms [3], as shown in equations (1) and (2):
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where R = resultant image; D = difference of two images; In = the nth image in the
sequence; k = constant; T = pre-defined threshold value. For these experiments, the
value of k and T were set to 3 and 15 respectively.

As a result of the segmentation process, the noticeable “moon” shape of the fish head
appears as a very constant feature in the binary image (figure 3). The fish head shape
is a binary pattern that can be easily recognised by using a simple classifier, such as
WISARD. The advantage of segmenting the images using the above method is that the
background of the image will stay almost constant, therefore only the swimming
motion of the fish will be detected in the resultant image. Hence, an n-tuple classifier
was developed and trained to identify this distinctive fish head shape.

4 N-tuple Classifier – WISARD
The n-tuple classifier is one of the oldest practical pattern recognition methods based
on distribution computation and amenable to description in term of neural network
metaphors. Although the n-tuple classifier is not famously popular compared to some
other methods, such as multilayer perceptrons, the n-tuple classifier does have its own
advantages over a variety of pattern recognition algorithms [6]. The most noticeable
advantages that are offered by the classifier are its speed of execution and simplicity of
implementation. The training of the classifier is a one-shot memorisation process;
computationally simple compared to other equation solving and minimising methods;
implementation of the algorithm is relatively simple and straightforward. The n-tuple
classifier implemented for this experiment is a simulation of the WISARD adaptive
image classifier that was developed by Stonham [8].
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WISARD is a trainable binary pattern classifier, consisting of a Look Up Table (LUT)
which holds information about the pattern that the classifier tries to recognise. The
LUT training is a two-stage method. Firstly, a set of n-tuples is produced from the
binary training image. Each tuple is made up of n elements/pixels from the image (n =
8 for this experiment) which represent an address in the LUT. The choice of which
pixels in the image are used to make up each tuple is defined once (pixel-tuple map).
Each element of a tuple is selected randomly and each pixel only contributes to one
tuple. Finally, the corresponding LUT address is marked to indicate a particular n-
tuple has been encountered during training. These steps are repeated by applying the
same pixel-tuple map to each image in the training set.

During the recognition process, the content of the test image is broken down into n-
tuples according to the pixel-tuple map. A test is then performed on each test tuple
against their corresponding LUT entry. A tuple is said to be fired, when the address
denoted by the tuple was marked during training. A score, Rv, of the test image can be
calculated:
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where R = score of the test image; T = total number of tuples in the LUT; F = total
number of tuples fired; f(a,b) = 1 if a = b and 0 otherwise; αi(x) is the i-th n-tuple of
the pattern x; u = the pattern embedded in the LUT; v = test pattern.

Rv indicates how closely correlated the test image is with the training set. Finally Rv is
tested against a pre-defined acceptance threshold or confidence level (CL), in order to
decide if the pattern is presented in the test image.
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where P = classification result of the test image; CL = acceptance confidence level.

5 Experiment
The aims of the experiments are to assess the usefulness of the n-tuple classifier as an
automatic detector for initiating the PDM fitting algorithm. They also investigate how
the performance of the classifier varies according to the use of different training set
and the amount of prior knowledge that is available to the classifier.

5.1 Description of Images
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Underwater stereo image sequences of free swimming salmon were captured in a fish
farm on the Western coast of Scotland. Images were captured (25 FPS) and stored
onto a computer hard drive. The images in each sequence were then pre-processed
according to the segmentation procedures described in the previous section. In total 11
sequences were captured and each sequence consisted of 12 pre-processed binary
images.

5.2 Description of Training Example Images

The Look Up Tables (LUT) in these experiments were trained with different sets of
training examples, in order to allow the assessment of how the performance of the n-
tuple classifier varied according to the training examples. The LUT was trained with
examples such as the ones shown in figure 4. The resolution of each training image is
96x38.

Five LUTs were constructed for these experiments using different sets of training
images:

LUT name Description Abbreviated as
LUT1 5 training images from a fish in a single

sequence.
5shs

LUT2 5 training images from different fishes in
different sequences.

5dhd

LUT3 8 training images from different fishes in
different sequences.

8dhd

LUT4 Same set of training image as LUT3, with noise
removed from the training images manually.

8dhdc

LUT5 9 training images from different fishes in
different sequences, with noise removed from
the training images.

9dhdc

Table 1, LUT definitions.

5.3 Experiment Procedures

The experiments were carried out in two parts using the LUTs listed in the previous
section. In the first part, the classifier will only perform matching and classification on
a test pattern with tuples that contain at least one black element/pixel. N-tuples that
contain only white pixels (these tuples will be referred to as white-tuples, and tuples
consisting of at least one black pixel will be referred to as black-tuples in the rest of the
paper) will be ignored by the classifier. The reason for ignoring the white-tuples is
because otherwise the classifier will return a high match score, Rv, when the classifier
is applied onto a completely white image [3].

Then the experiment will be repeated taking into account the number of white pixels
that are expected to be in the test image. This was achieved by simply recording the
number of white-tuples that were encountered during the training stage. During the
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matching process the number of white-tuples encountered from the test image will be
recorded, and a test will be carried out to see if the number of white-tuples from the
test image exceed the expected number of white-tuples that was generated during the
training stage. That is the condition in (5) is replaced by (8):
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where W = number of white-tuples generated from the test image; T = total number of
tuples in the LUT; TW = ration of white-tuples generated from the test pattern; w(a) =
1 if a = white-tuple and 0 otherwise; αi(x) is the i-th n-tuple of the pattern x; P =
classification result of the test image; CL = acceptance confidence level; EW =
expected ratio of white-tuples; v = test pattern.

The purpose of splitting the experiment into two parts as described above is to assess
how the performance of the classifier will vary according to the amount of the prior
knowledge on the pattern that is available to the classifier.

6 Results and Discussion
For each image in the test set, the highest “fish-head” and noise score were recorded as
shown in figure 5. A graph was drawn for the performance of the classifier according
to the LUT used. The graph shows the distribution of the “fish-head” score and the
noise score when the classifier was applied to the test data. The results are
summarised as shown in table 2.

Graph No. Description of LUT used and matching method Noise ratio (N)
1 Using LUT1 (5shs), match only on black-tuples 0.329
2 Using LUT2 (5dhd), match only on black-tuples 0.231
3 Using LUT3 (8dhd), match only on black-tuples 0.197
4 Using LUT4 (8dhdc), match only on black-tuples 0.194
5 Using LUT5 (9dhdc), match only on black-tuples 0.155
6 Using LUT2 (5dhd), match on all tuples 0.104
7 Using LUT3 (8dhd), match on all tuples 0.095
8 Using LUT4 (8dhdc), match on all tuples 0.063
9 Using LUT5 (9dhdc), match on all tuples 0.045

Table 2, Description of results of the n-tuple classifier

The graphs show how the fish-head and noise scores are distributed with respect to
how the classifier is trained and used during the classification process. The ideal
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results should show the two distribution separated from each other without much
overlapping. That is, the classifier will be able to identify the fish head in the image by
a straightforward thresholding value, CL, that can be defined by drawing a decision
boundary at the point where the two distributions overlapped. Finally the noise ratio of
the results are calculated for comparing the performance of the classifier (the lower the
noise ratio, the better the performance).
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where N = noise ratio; F+ve = the area under the noise graph on the RHS of the decision
boundary; T+ve = the area under the fish-head graph on the RHS of the decision
boundary.

Graphs 1 and 2 show that the classifier will perform better if the training set is
extracted from different fish over different sequences. The noise ratio, N, for graph 1
and 2 are 0.329 and 0.231 respectively. The observation obtained can be explained by
the fact that the pattern embedded in LUT2 captured the variability of the fish head
shape from different fish. Therefore when the LUT is applied to the test pattern, the
classifier will be able to coping with the fish head shape variations in a more flexible
manner than LUT1.

Graphs 2 and 3 show that the classifier executed the recognition process with better
results if the LUT is trained using a large training set (N for graph 3 is equal to 0.197).
The reason for such a performance boost by simply increasing the size of the training
set is obvious because the more the classifier can learn about a pattern from examples,
the better it should be able to perform the test and hence only accept patterns which are
highly correlated to the embedded pattern in the LUT. However as pointed out by
Rohwer et al [6], the classifier can also be easily over-trained by using a training set
which is too large or where too much variation is present in the examples. Therefore
extra caution is required to make sure the LUT is not over-trained.

Graphs 3 to 5 show that the classifier performance is improved by a cleaner set of
training images. The images used in LUT4 and LUT5 have been clean up manually to
remove random noise from the image. This procedure should allow the LUT to be
trained only on the emphasis of the distinctive “moon” fish-head shape and no extra
noise information will be recorded into the LUT. Therefore during the recognition
process, the classifier can “concentrate” on the pattern that is of interest and ignore all
the unnecessary information caused by noise. The noise ratio for graphs 3, 4 and 5 are
0.197, 0.194 and 0.155 respectively.

In graphs 6 to 9, the experiment was repeated, but now also using information
concerning the number of white-tuples that are present in the training pattern and in
the test pattern. The reader should notice how much further the two distributions are
separated from each other in these graphs when compared with the results that were
generated without taking into account the white-tuples in the images. The noise ratio
of graph 6, 7, 8 and 9 are 0.104, 0.095, 0.063 and 0.045 respectively. The sudden
increase in performance by incorporating prior knowledge concerning not only the
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pattern itself, but also the amount of information within the test region is
understandable. The classifier can perform a test based not only on the pattern that is
embedded inside the LUT, but also on other criteria that are available in the test image.
Therefore, performance of the classifier should be expected to increase accordingly.

From all the experimental results, it has been shown that the performance of the n-
tuple classifier varies according to, how the training set is chosen, number of training
examples used, level of noise present in the training image and amount of prior
knowledge that is available to the classifier.

The results from these experiments suggest that the n-tuple classifier offers a simple,
efficient but accurate algorithm for locating fish position in an underwater image.
Therefore the use of an n-tuple classifier should allow the PDM fitting algorithm to be
initiated automatically with high accuracy. Hence, the process of the extracting lateral
length information from the fish in the stereo images using could be done
automatically.

7 Conclusion
This paper described a system that will allow fish farmers to inspect their valuable
salmon stocks without the stress introduced by current examination practices. A
segmentation and pattern recognition technique, based on WISARD, is described in
detail including how the technique can be used to aid the remote salmon inspection
process.

Previous results in earlier publication [3] showed the potential of the WISARD
algorithm in processing underwater images for this particular application. In this
paper a more detailed experiment were described in order to assess the performance
and usefulness of the n-tuple classifier in the application in question.

It has been found that the WISARD classifier performance will be affected by factors
that are associated with the training of the LUT. These factors included:

• Training examples used in the training set.
� The classifier will give better performance if the training set data are collected

over a range of different fish from different image sequences (Graphs 1 and
2).

• Number of examples used in the training set.
� The bigger the training set, the better the classification performance.

However it should be noticed that the LUT could be over-trained, therefore
poor performance from the classifier as a result. (Graphs 2 and 3).

• Amount of noise included in the training images.
� The less noise the training patterns contained, the better the classification

performance (Graphs 3, 4 and 5).
• Amount of prior knowledge available to the classifier concerning the pattern and

the test image.
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Ø More prior knowledge available to the classifier, the better the
classification performance (Graphs 6,7,8 and 9).

The results from these experiments suggested that the n-tuple classifier is a suitable
tool to be used for fish recognition in underwater images, hence it is a suitable tool
to be used for monitoring fish underwater.
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Figure 1 , Salmon truss network

Figure 2, Underwater stereo image pair
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Figure 3, Examples of training images

Figure 4, Pre-processed image

Figure 5, WISARD in action
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Graph 1, WISARD scores with LUT1
LUT2, black-tuples, N = 0.231
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Graph 2, WISARD scores with LUT2
LUT3, black-tuples, N = 0.197
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Graph 3, WISARD scores with LUT3
LUT4, black-tuples, N = 0.194
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Graph 4, WISARD scores with LUT4
LUT5, black-tuples, N = 0.155
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Graph 5, WISARD scores with LUT5

LUT2, all tuples, N = 0.104
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Graph 6, WISARD scores with LUT2
LUT3, all tuples, N = 0.095
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Graph 7, WISARD score with LUT3
LUT4, all tuples, N = 0.063
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Graph 8, WISARD score with LUT4
LUT5, all tuples, N = 0.045
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Graph 9, WISARD score with LUT5
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