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Abstract

It is shown that, in comparison to the results obtained from a conventional least squares
approach, a total least squares solution leads to significant improvements in the geometry
and appearance of images synthesised in a linear combination of views procedure. Use of
the total least squares criterion is appropriate when errors on the control points are
independently and identically distributed between the basis images and the target image
being synthesised. When this is not be the case it is pointed out that the generalised total
least squares procedure should be used. A synthetic object is used to evaluate the
improvement in geometric accuracy obtained by use of the total least squares solution in
comparison to a classical least squares method. Simulated and real images of laboratory
test objects are similarly used to illustrate the improvement in appearance of images
reconstructed by means of the total least squares procedure.

1 Introduction

The problem of view synthesis, in which novel views of objects and scenes are
constructed from a small set of basis views, has received much attention recently [3-11].
Usually, but not invariably, the basis views are existing images and the reconstruction is
based on a form of image interpolation or morphing that originated with the work of
Ullman and Basri on object recognition. They first showed [1] that it is possible, to a good
approximation, to derive linear relationships between the geometry of three views of a
scene. Since then the theory has been greatly extended, in particular by the application of
geometric invariance principles [see for example 12 and 13] and development of the tri
and quadrifocal tensors [14-16], but it appears that a subtle point, first noticed recently in
computer vision in the context of estimating the fundamental matrix [17], the way image
measurement errors are treated has not been addressed. The aim of this paper is to show
how, for the approximate linear morphing relationships most frequently used in practice, a
correct error analysis may be carried out and to evaluate the resulting improvements in the
geometry and appearance of the reconstructed images.
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2 Linear Combination of Views

Although the idea of a linear combination of views was originally proposed [1] for object
recognition and derived under assumption of orthographic projection, it has since been
realised [2] that the model may easily be derived under the assumption of affine or weak
perspective projection. In this case, as described in [9]:

x=pX+pY+pZ+p,, y=p,X+p,Y+p,Z+p, (D
where (x,y) are the image co-ordinates and (X,Y,Z) are the world co-ordinates.

Given two views with image co-ordinates (x,)y") and (x”,y”) we have four
equations of the form (1). Using three of the four equations we can derive expressions for
X, Y, and Z that can then be substituted into equation (1). In the absence of errors in the
image co-ordinates, a number of equivalent relationships may be obtained. For example, if
we choose to retain x’, y" and x” this gives the equations first obtained by Ullman and
Basri [1] by consideration of the changes in appearance of an object under orthographic
projection:

x=ax+a,y+a.x'+a,, y=>bx+b,y'+bx"+b, 2
The simplest way to use equations (2) is to regard them as a kind of image warping. Thus,
given a set of four corresponding control points on an object in each of the three images it
is possible to solve for the coefficients a;, b; and to regard the resulting transformation as a
mapping from which, given two basis images or views I'(x’,y") and I”(x”,y”), we can
reconstruct the co-ordinates (x,y) in the third, target image I(x,y).

In practice, however, the corresponding control points are likely to contain
measurement errors, so the above procedure is not correct and likely to lead to very large
errors. It would be better to use a least squares solution of the original equations (1) and
use criteria such as the accuracy or conditioning of the solutions to select the most
appropriate relationship of form (2). However, it has been shown [9,10] that, it is possible
to use an over-complete set of equations of the form

x=ax+ta,y+a,x'"+ta,y'+ra,, y=>bx'+b,y+bx"+b,y"+b,, (3)
which have the advantage of being symmetrical in the basis view co-ordinates [9] and
have been found to be numerically quite stable in practice [9-11]. Thus, unlike (2),
equations (3) do not produce large errors if the target view is close to one of the basis
views, in this case the second view, I”(x”,y”).

Given a set of control points we can then solve for the coefficients a;, b; in (3) in
a classical least squares sense. However, this assumes [18,19] that all the measurement
errors are contained within the target view co-ordinates (x,y) and that the basis view co-
ordinates (x’,y") and (x”,y”) are error free. In fact, this is never the case. The whole point of
such view interpolation schemes [6,7] is that the basis views are obtained from actual
images and that other, usually novel, views are reconstructed from them without having
explicitly to construct a 3D model of the object. There will thus always be errors on the
basis view control point co-ordinates (x’,y") and (x”,y”), even if they are selected by hand
[9-11].

Moreover, there will also be errors on the target view co-ordinates (x,y). In test
experiments [9-11] where the target views are themselves also real images used for a
quantitative evaluation of the view interpolation, the errors on (x,y) will be similar to those
on (x’,y") and (x”,y”). Under these conditions, a total least squares error criterion is
appropriate [18,20]. This is the case analysed in detail in the remainder of this paper as the
target image to be reconstructed can be used to evaluate the procedure quantitatively.
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However, we point out that even when a novel view is constructed using such an
interpolation scheme, there will still be errors on the control co-ordinates (x,y). For
example, if (x,y) are inferred from some kind of view interpolation [6] from (x’,y") and
(x”,y"), errors from the basis views will propagate to (x,y). Similarly, if the original
viewpoints (ie. the camera co-ordinates) for the basis views are known or inferred, and the
viewpoint of the novel view inferred or interpolated there will still be error propagation to
(x,y). Finally, even if the coefficients a;, b; are interpolated directly [21], a similar fitting
problem will still be encountered in parameterising the basis views.

In general therefore, there may be errors on all terms in (3) except the last two
containing the constants as and bs, and these errors may be correlated. The technique
capable of dealing with all such problems is the generalised total least squares method
[22], introduced recently in computer vision research to deal with similar problems in
calculating the fundamental matrix [17]. Its application is similar to that of the total least
squares method used here, except that it leads to a generalised eigenproblem [23] whereas
the total least squares requires only a conventional eigenproblem or singular value
decomposition. Since the total least squares method is the more familiar, simpler and, after
a simple transformation, appropriate for the quantitative evaluation of the view
interpolation, it will be used in what follows. Before describing how the total least squares
approach was used, we finally note for completeness that a similar error analysis should,
in principle, be applied to all applications of the essential and fundamental matrices and
tri- and quadrifocal tensors [16] although, unlike the approximate view interpolation
considered here, these problems are all non-linear, requiring either an approximate
linearisation of the error weighting [24] and/or an iterative solution.

3 Application of the total least squares method

In the experiments reported here, all the points in all views are found using the same
method and therefore likely to be affected by the same errors. For complete symmetry
between all six image co-ordinates, it is therefore best to seek linear relationships of the
form:

Ix+Ly+Lx+]y+l.x"+y"+, =0. “)
We can now solve (4) under the assumption that the errors are independently and
identically distributed among all the co-ordinates. If all the terms were affected by errors
and the errors are independently and identically distributed it is possible to solve using a
total least squares (TLS) technique [18,19,20,22]. However, the particular case we have
here has a term /; at the end which is the co-effiecent to be multiplied by the constant 1,
which does not have any measurement error associated with it. In principle, we should
therefore solve (4) as a generalised total least squares (GTLS) problem [22,17], which
effectively [22] uses matrix transformations to eliminate such terms. In our case, however,
we may proceed more simply by eliminating this term directly by summing over all n
control points to obtain an expression for /;, which we can then substitute back into (4).
This provides a set of equations of the form:

LAX(D) + LAY(@E) + LAY (D) + LAY (D) + A" () + L AYy" (1) =0 . 5)

Where Ax(i) is the distance of the control point from the centroid of the object in each
image. There are now similar measurement errors on each term in (5) which may therefore
be solved straightforwardly as a total least squares problem. To do so, we combine the
equations for all n control points in matrix-vector form:
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XI1=0, (6)
where X is an n x 6 rectangular matrix, whose rows are equal to (Ax(i),Ay(i),...,Ay” (D).

The total least square solution which minimizes the sum of the squared errors on
the co-ordinates Ax(i), Ay(i), Ax'(i), AY'(i), Ax"(i), Ay”(i) is then obtained by a singular
value decomposition (SVD) of X [18,19], and the singular vectors, [ and m, corresponding
to the two smallest singular values of X provide, with the expressions for /; and m;, the
best two linear relationships between the image co-ordinates. We assume, for calculation
of the distance measures described below in section 4, that the singular vectors are, as
usual, normalized to unit length, ||{||* = [|m|* = 1

4 Evaluation

In the remainder of this paper, we assess the benefits of using the total least squares error
approach described above, first by considering its geometric accuracy using a synthetic,
test object, then by considering the reconstruction of computer generated images and
finally by comparison of reconstructed images of views of real objects, using a laboratory
test scene. A face image is also reconstructed to illustrate the process on more general,
natural imagery. The last two comparisons require calculation of image intensities in
addition to the co-ordinates (x,y), for which we follow an interpolation scheme similar to
that proposed in [9-11].

In [9-11], image intensities were interpolated by using a measure of the
distances, d’ and d”, of the target image I(x,y) from the basis images I’(x",y") and I”(x”,y”)
respectively defined from the coefficients a;..a, and b,..b4 in (3). We proceed similarly
from our total least squares solution using the singular vectors [ and m, and define the
relative image distances as:

d°=1"+1"+m +m and d"=1"+1"+m +m. 7
As for the distance measures used in [9-11], &’ correctly vanishes whenever the geometry
of I(x,y) may be obtained by a simple affine warping of I'(x’,y") alone, and similarly for d”
and I”. Moreover, unlike the scheme used in [9-11], we can, if desired use the symmetrical
form of (5) to define a similar distance d between the basis views. These relative distance
measures are sufficient for the image interpolation required here although, if desired, one
could envisage making them absolute by, for example, averaging d over the ensemble of
image views I of the object (or scene) of interest.

To interpolate I’ and I” to reconstruct I we then simply weight them accordingly

I=wI+w'l", @®)
with weights
w'=d"/(d*+d"™) and w'=d"*/(d>+d"™) 9)

This defines the image intensity / at control points (x,y). In order to reconstruct / at all
pixel locations, we triangulate the target image / and perform a piecewise linear mapping
inside each triangle as described in [25] and used previously in [9-11]. Such an
interpolation is consistent provided the image co-ordinates are linearly related and the
triangulation is constrained to contain known object and surface boundaries. Although
Delaunay triangulation algorithms have been developed [28] to take account of such
constraints, in our examples, the triangulation, like the correspondence of the control
points was performed manually.
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4.1 Synthetically generated object

To compare the geometric accuracy of the total least squares solution (5) and the classical
approach (3) used previously in [9-11], we used the vertices of a translucent geometrical
test object in synthetically generated images as control points. The test object had ten
vertices, eight at the corners of a unit cube and two at co-ordinates at (2,2,2) and (-2,-2,-2)
on a diagonal line through opposite corners of the cube.

A series of tests were carried out on this object with the camera centres at several
different positions. The tests included change of the distance of the cameras from the
object, moving the target camera closer to one of the basis cameras, and moving the target
camera perpendicular to the line joining the two basis camera centres. These tests were
repeated 50 times with varying levels of random noise, between 0.26-2.5 pixels, added to
all image control point co-ordinates.

To see how the solutions performed as the distance between the cameras and the
object was varied, we first placed the target camera at (0,0,300) and the two basis cameras
at (-30,0,300) and (30,0,300). We then moved all the cameras towards the object on a
straight line from their initial positions 300 units from the object to within 5 units of its
centre at (0,0,0). As shown in figure 1(a), the total sum of squared errors for the total least
squares solution (5) is always considerably less than that obtained from the classical least
squares solution (3). Figure 1(b) shows the difference in the root mean squared error of the
two solutions, (3) — (5), as the basis view cameras were moved further apart. The target
camera was kept halfway between the two basis cameras. The improvement factor
obtained by use of the total least squares approach is, as might be expected, larger at
smaller distances, but approximately independent of the angle between the basis views.

Changing distance between basis view cameras
Comparing solutions (7) and (3)
1 T T T T T
50 100 150 200 250 390 0.1 02 0.3 04 0.5 6|

1.00E+00

)

1.00E-02

d error

sguare
§ g

solution (3)

total sum of squared errors
Difference in root mean

——Distance 3
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—¥— Distance 43
—_—_S 7) 0.00001
1.00E-08 — Tangent of the angle between target camera and each
Distance of camera away from the object basis view camera
(a) (b)

Figure 1: Graphs comparing classical least squares and total least squares errors

(a) (b)

Figure 2: simulated boxes and reconstruction
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4.2 Simulation

A set of images of a collection of coloured boxes similar to those used in section 4.3
below were simulated using Povray under orthographic projection. Under these
circumstances and with no errors on the control points, a linear reconstruction is exact [1].
The reconstructed image is shown in figure 2(b). The first impression is of an accurate, but
slightly blurred version of the target image 2(a). The blurring is a result of the intensity
interpolation (8) and of the bilinear interpolation used to compute the basis image
intensities I’ and I” between pixel co-ordinates. Similar effects have been reported by
Pollard and he has suggested more sophisticated schemes that preferentially weight high
spatial frequency components to the closer basis image [29]. There is also some aliasing at
the boundaries of the boxes, but this could easily be corrected by weighting contributions
to pixels on the boundaries appropriately.

4.3 Real Images

In order to use the relationships to reconstruct an actual image, a laboratory test scene was
set up comprised of three boxes covered in coloured wrapping paper. A collection of
photographs were taken at various, known camera positions, both of the boxes and of a
calibration object made up from two planar tiles at an angle of 90°, both similarly covered
by colourful pictures.

() (b)

Figure 3: original and reconstruction of calibration targets

The corners of the boxes and tiles were used as control points, selected manually
in all images, and used as input to the total least squares solution (5). These relationships
were then used them to locate the positions of the control points in the third image using
the known correspondence between the first two. The target image was manually
triangulated so that all triangles fall on faces of the boxes or tiles. The control points were
then projected into the third image using two equations of the form of (4). For the
calibration tiles, figures 3(a) and (b) respectively show the actual target image, and the
reconstruction. Apart from slight blurring, the reconstruction appears to be excellent.
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y

(e (d)
Figure 4: (a) and (b) basis views, (c) original target, (d) reconstruction

For the boxes, figures 4(a) and (b) were used as the basis images and 4(c) is the
target image that we are trying to reconstruct. Again, the first impression (figure 4(d)) is of
an accurate, but slightly blurred reconstruction, with some small, but noticeable artefacts
at some of the occluding boundaries of the boxes. In particular, a small gap appears where
the edge of the box nearest the cameras occludes the face of the smallest box. In this case
itis not an aliasing effect. It is caused by the fact that the approximate linear mapping does
not bring points in the target image exactly to their correct, corresponding positions. In
practice, when the target image exists, as for example, in image encoding applications
[10,11] the control point co-ordinates may themselves be used directly to define the
triangulation in the target image and the subsequent interpolation, with the linear mapping
entering only via the weights (9). In such cases, such problems caused by the approximate
nature of the linear mappings are therefore circumvented, but in other applications, where
the target image is not available, an alternative solution is required to ensure a consistent
reconstruction. This is currently under investigation on a separate, but related research
project aimed at using these techniques for the visualisation of historical artefacts over the
Internet. Similar problems occur at other occluding boundaries where the pixels may
overlap. Although not easily visible in figure 4(d), such overlap occurs at the top of the
front box and has been highlighted by insertion of a red line. However, in this case it is
easy to use the relative affine depth [2,30] to render only pixels on the nearest surface,
essentially [9] by solving for the depth Z at each control point instead of eliminating it as
in (3). Finally, we note that, with the present interpolation scheme, we have not
reconstructed parts of the image present in only one basis view although, given the
correspondences and triangulation, this should be easy to fix.
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4.4 Face images

Finally, figure 5(b) and (c) show part of a face that has been reconstructed using the
classical least squares (3) and the total least squares (5) schemes. The two relationships
were estimated using the same set of control points. It can been seen that the two solutions
are very similar and are both of very good quality. If inspected closely it can be seen that
the shapes of the reconstructed sections are different, where the total least squares scheme
has located the control points more accurately. There is also an improvement in the
mapped intensities with the total least squares reconstruction but this is not visually
obvious.

(b) (©)

Figure 5: Reconstruction of a face image

5 Conclusions

It has been shown that a careful treatment of the measurement errors in a linear
combination of views procedure by use of a total least squares solution leads to significant
improvements in both the geometry and the appearance of the images generated. A
synthetic object, simulated images produced by a ray tracer, laboratory test images of a
simple scene, and a face image were used to assess performance of the approach. In
particular, the synthetic object was used to show that the total least squares solution
produces smaller geometric errors than a classical least squares solution. The simulated
images, constructed under orthographic projection so that there were no geometric errors,
were used to illustrate the quality of the image intensity interpolation. The laboratory test
images were then used to show that the overall quality of reconstruction was similarly
excellent for real data. They also indicated, however, that there were artefacts at occlusion
boundaries caused by the approximate nature of the linear mapping between the images.
Finally, face images were used to show that use of the total least squares procedure can
lead to useful improvements in the quality and realism of the reconstruction of natural
imagery.
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In this paper we have only dealt with linear relationships which, under affine
imaging conditions, are a good approximation to the full perspective trifocal tensor
relationships. These linear relationships are, in fact, equivalent to the affine trifocal tensor
described by Mendonca and Cipolla [31]. In the experiments reported where we were
reconstructing an existing test image, a total least squares (TLS) solution [18] could be
used since errors on the control points were independently and identically distributed.
However, it was pointed out that in general when, say, a novel view of an object or scene
is to be generated, the generalised total least squares (GTLS) procedure [22] should be
used. Such a generalisation does not affect the principle of our approach, but would lead to
a slight increase in the complexity of the solution since it requires a generalised singular
value decomposition rather than the more familiar SVD [23]. Finally, we note that to
apply either the total least squares or generalised total least squares procedure to the non-
linear trifocal tensor equations would, in general, require an iterative solution.
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