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Abstract

The goal of augmentedreality is to insertvirtual objectsinto real video sequences.
Thispapershows thatby incorporatingimage-basedgeometricconstraintsover mul-
tiple views, we improve on traditionaltechniqueswhich usepurely3D information.
The constraintsimposedarechosento directly target perceptualcues,importantto
thehumanvisualsystem,by whicherrorsin AR aremostreadilyperceived. Imposi-
tionof theconstraintsisachievedbyconstrainedmaximum-likelihoodestimation,and
blendsprojective,affineandEuclideangeometryasappropriatein differentcases.We
introducea numberof examplesof augmentedreality tasks,show how image-based
constraintscanbe incorporatedinto current3D-basedsystems,anddemonstratethe
improvementsconferred.

Keywords: Augmentedreality, Structurefrom motion,Multiple-View Geometry.

1 Intr oduction

Theobjectiveof augmentedreality (AR) is to addvirtual objectsto realvideosequences,
allowing computer-generatedimageryto beoverlaidon thevideoin sucha mannerasto
appearpart of the viewed 3D scene.Applicationsincludecomputer-aidedsurgery [7],
robot teleoperation[11], andspecialeffectsfor thefilm andbroadcastindustries[6, 20,
12]. Thispaperconcentrateson theparticularapplicationof videopost-production.

Augmentationfor specialeffects (or compositing) has traditionally beendone by
skilled animators,painting2D imagesonto eachplateof film. This techniqueensures
that thefinal compositeis visually credible,but is enormouslyexpensive,andis limited
to relatively simpleeffectsevenfor expertanimators.

More recently, computergraphicshasdrivenanapproachin which theworld is mod-
elledin 3D,andthenthecamerais computedfor eachframein thesequence[22]. Graph-
ical modelscanthenbe renderedfrom the samesequenceof viewpointsastheoriginal
footage,giving theimpressionthatthevirtual objectsarerigidly attachedto thestructure
in thescene.Furthermore,recentadvancesin structureandmotionrecoveryhaveenabled
the3D structureandcamerasfor eachframeto berecoveredautomaticallydirectly from
theimagesequence[1, 2, 5, 14, 15, 21].

However, althoughthe cameramotion can be recoveredto sub-pixel accuracy, the
registrationaccuracy of theaugmentationmustequalor surpassthis. Theerrorsresulting
from inaccurateregistrationfall into two maincategories:a high-frequency (framerate)
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jitter, and low-frequency drift. Even if jitter is of the order of tenths of pixels, a task such
as line extrapolation (� 3) amplifies the error to levels which cause the augmentation to
visibly wobble in the composited sequence. Drift is unacceptable because of the human
visual system’s high sensitivity to perceptual cues such as motion parallax and parallelism,
exposing even sub-pixel discrepancies in the final output. At a basic level, drift is a
problem of temporal extrapolation—geometry is predicted well in the frames from which
it was estimated, but the prediction degrades for extrapolation into other frames. However,
although the feature may not be detectable in the “far” images, its position may be inferred
by human observers using other cues (for example, a nearby parallel line in� 3.1), and
errors in extrapolation will be observed.

In the post-production industry, correcting these deficiencies requires manual inter-
vention afterwards to fine-tune the registration. The novelty in this paper is that we ex-
plicitly incorporate image and scene constraints into the geometry estimation and achieve
perceptually perfect results automatically. The key to the approach is that the percep-
tual cues by which human observers discern errors in the augmentation are targetted and
incorporated into the geometry estimation and rendering processes.

(a)

(b)

(c)

(d)

Figure 1:Typical AR tasks: (a) Five frames (between frames 70 and 220) from the Wilshire
sequence. The images are �����
	���

��� pixels. (b) Plane augmentation with occlusion—the
‘Cowdays’ logo is added to the far building and occluded by the sides of the foreground
Wilshire building. (c) Plane extrapolation—the sides of the foreground “One Wilshire” build-
ing are extended. (d) 3D augmentation—an extra storey “Two Wilshire” is added to the top
of the Wilshire building.
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1.1 Overview

Three basic types of insertion AR tasks will be considered, imposing progressively more
complex requirements on the tracking and estimation algorithms.

1. Augmentation of a planar surface:This is the simplest case—only a single plane
need be considered, and the computational task is to determine a 2D homography.
If the plane is not a foreground plane, occlusion boundaries must be identified and
tracked.

2. Augmentation of connected planes:To augment a pair of connected planes, it is
perceptually important that the line of intersection be accurately located. However,
for image processing reasons, this line is often impossible to track through much
of the sequence, so must be extrapolated from a small number of closely-spaced
views.

3. 3D Augmentation. In order to introduce a 3D object into the scene, the 3D loca-
tions of some reference points must be determined. Again this may only be possible
over a short baseline, causing drift in the augmentation if not corrected.

Figure 1 shows typical examples of these techniques applied to a sequence of�����
images of skyscrapers in Los Angeles, viewed with a moving camera mounted on a heli-
copter. Camera positions for each frame are computed automatically, together with corre-
sponding interest points using the method described in [5]. The sequence provides several
thousand 3D points, with RMS image reprojection error of����� pixels. In the following
sections we go through each of these examples in detail.

2 Example I: Planar surface augmentation

The objective here is to superimpose an image onto atargetplane in the scene.
The map between planes in perspective images is a planar homography� (a plane

projective transformation). We will require the map between the plane of the augmenting
pattern and the scene plane in each frame of the sequence. Equivalently this map may
be computed as the map from the augmentation pattern to the scene plane in one frame,
composed with the inter-image homography of the scene plane between this frame and all
others in the sequence. We explore two ways of computing this inter-image homography
induced by the target plane, one local and one global.

Method 1: A purely 2D approach is to track image features, such as lines or interest
points and compute the homographies directly by least squares fitting. The homographies
are then optimally estimated by bundle adjustment (see below).

Method 2: A more global approach is to impose the global scene constraint that all
the tracked features are coplanar. The homographies are computed by identifying a 3D
plane, and projecting it via the precomputed camera matrices. Suppose the����� camera
matrices for each view are�� �!#" $� &%('*),+ , then if �*-.!/"102%435+ and the plane is defined by
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687:9 !;� with 6<7 !/" = 7?> + then the homography induced by the plane between views@
and > is [17]

�  !A$  CB '  = 7 (1)

The parameters of the plane are estimated by least-squares fitting to the same features
used to track in method 1, and then by constrained bundle adjustment.

2.1 Implementation

The implementation of both of the above methods depends mainly on three technologies:
bundle adjustment, geometrically constrained optimization and line tracking. These will
also be central to the more complex estimation procedures later in the paper.

2.1.1 Bundle Adjustment

Bundle adjustment [9, 19] is used to optimally estimate geometric relations over multiple
views, for example the homography used in method 1 above. It is a nonlinear least squares
technique which gives the maximum likelihood estimate under the assumption that the
errors in the measured 2D points are Gaussian.

We wish to estimate homography matricesD�  for each view and ideal 2D pointsDE )
such that the reprojection error to the measured image pointsE  ) is minimized. This
corresponds to minimizing the cost function

FHGJIKL4MON KPRQ
S
)T 
UWVYX D�  DE )[Z E  )]\

where
U^X E Z(_ \ is the Euclidean image distance between two pointsE and _ , and distances

are included for every view in which there is a correspondence. In this case the number
of parameters that must be estimated is`�acbd�Re for a views (8 for each homography
matrix) ande 2D points.

2.1.2 Error metric for line segments

If line segment (as opposed to point) features are tracked, then the error metric is modified.
The ideal line is again parametrized by 2 degrees of freedom, and the error is the sum
of squares of perpendicular distances between the detected line segment endpoints and
the infinite 2D line [16]. This provides a reasonable approximation to the Mahalanobis
distance at significantly reduced computational cost.

2.1.3 Geometrically constrained optimization

Because bundle adjustment explicitly parametrizes the geometric relations, it is just as
readily applied to the geometrically constrained problem in method 2. In this case,
the constraint is that the image features are coplanar in 3D. This is ensured simply by

parametrizing the plane by the 3 d.o.f. of= , so that each homographyD�  is a function of�� and= as in (1). Again, each 2D point on the 3D plane has 2 parameters, so that the total
number of unknowns is�fbg�Re . This use of constrained optimization features through-
out the rest of this paper, where image errors will be minimized over some parametrized
geometric model.
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2.1.4 Line tracking

Both the techniques discussed above for computing planar homographies require feature
correspondences over many frames. A parametrized tracker [3, 8, 10] is used to automat-
ically determine the positions of 2D line segments in the image sequence. An estimate of
the line configuration in some image coordinate frame is used both to predict the location
of the lines in the next frame, and in the rejection of outliers generated by the detection
process. This estimate is initialised by edge detection and line segment fitting in the view
closest to a fronto-parallel view of the plane.

In its simplest form, each line is parametrized by its 2 degrees of freedom. For con-
strained estimation, though, a more general form is used, where an arbitrary collection
of 2D lines is parametrized by some user-specified model. For example, a single tracked
line might be constrained to pass through a vanishing point, so that it has only one degree
of freedom; or a collection of lines may be parametrized by a single homography.

2.2 Comparison

In comparing the two methods for plane augmentation, we can immediately make some
qualitative observations.

Method 2mustbe used in images where no features can be detected on the target
plane—for example, if the plane is temporarily occluded, or when it is foreshortened
prior to going out of shot. Also, plane tracking requires fewer 2D features to define the
plane. In figure 3, this proves very important, as the only reliable 2D features on the
lower half of the building are a set of parallel lines, which are insufficient to determine a
homography using method 1.

However, it is clear that homographies calculated by method 1 will more accurately
fit the tracked features, since in method 2 we impose an additional constraint that the ho-
mographies must be consistent with the given camera projection matrices. Consequently,
the results of method 2 are limited by the accuracy of the supplied camera projection
matrices. Figure 2a shows the difference in accuracy of the two techniques.

On the other hand, method 1 may worsen the results if the tracked 2D features have
correlated errors. For example, on the front wall of the Wilshire building, the vertical
edges correspond in later frames to shadows cast by the wall on the windows. Tracking
these features results in a low-frequency drift which produces a large movement of the
augmenting surface. Manually deleting the offending features is simple, and results in a
greatly improved track, but an automatic method would be preferable.

2.3 Occlusion

If the plane to be augmented is not a foreground plane, it is important that the augmenting
pattern be correctly occluded by foreground objects. In the case where the foreground
objects have straight edges, the 2D line tracker is used to locate the occluding edge in
each image. Simply excluding pixels on the occluded side of the line results in the correct
occlusion (Figure 3).
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Figure 2: (a) Reprojection error (RMS in pixels) for planar homography estimation (near-
side plane of “One Wilshire”). Method 1 (solid) estimates 8 d.o.f. of H for each frame.
Method 2 (dashed) estimates the 3 d.o.f. of the plane h over the whole sequence and
therefore results in a larger error. The method 1 error increases slowly through the 100
frames as the image noise increases, while the method 2 error varies from frame to frame
as the relative quality of the i matrices changes. (b) “Super-resolution” texture extraction :
The left image shows a single frame warped into canonical position; the right image shows
the texture averaged from all images of the surface, after method 1 has registered them
into the canonical frame.

3 Example II: Connected plane augmentation

In this example, the prototypical task is to extend the sides of one of the foreground
buildings in the sequence vertically. This is achieved by extrapolating spatially the 3D
lines which define the sides of the building. This also involves a temporal extrapolation,
as the three visible lines are reliably detectable in only a subset of the complete set of
frames, but must appear rigidly fixed in all frames of the sequence.

In this case, the visual cue which most tellingly reveals any inaccuracy is parallelism
between the re-rendered walls of the building and other verticals in the scene. There-

Figure 3:Insertion with occlusion: The “Cowdays” logo added to the far building is correctly
occluded by the foreground “One Wilshire” building. The homography for augmentation is
computed using method 2, as there are too few features on the building to use method 1.
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Fitting accuracy (Frame 210) Extrapolation accuracy (Frame 100)

Fit Parallel Fit Parallel

Figure 4: Augmentation with parallelism constraints. “Fit”: 3D line fitted to image tracks
from frames 190–230. “Parallel”: 3D line from the constraint that all verticals must share
an intersection point. In frame 210, “Fit” is more accurate, because this is in the middle of
the set of frames from which the line was estimated. Extrapolating back in time to frame
100, however, shows that the line is more accurately estimated over the sequence as a
whole by using “Parallel”.

fore, we instantiate the 3D lines so that they are constrained to be parallel. In projective
geometry, this is equivalent to saying that the lines are coincident at a point in 3-space.
Furthermore, in this case, the lines are parallel to several other vertical lines in the scene,
so all can contribute to computation of the vertical intersection point.

3.1 Comparison

Figure 4 shows the reprojected 3D lines with and without the parallelism constraint. In
particular, the line on the near corner of the building, which is detected only in extreme
frames of the sequence, is more reliably estimated over the whole sequence when con-
strained to be parallel to more reliably detected lines.

3.2 Implementation

The constraint that the three vertical edges of the building are parallel is implemented over
multiple views as follows. We require that the lines in 3-space intersect in a single point.
For e vertical lines in 3-space, this reduces the estimation from�Ye degrees of freedom
(four for each 3D line) to�.bg��e , three for the intersection point and two for each line.
The specific parametrization used represents each 3D line by two points: the common
intersection point, and a point on an arbitrary reference plane (2 d.o.f. per line). Then, the
intersection point and 3D lines are estimated by minimizing reprojection error (� 2.1.2)
over all views.

In order to extend the building, a texture image is computed by averaging the im-
ages of the tracked plane over many views, resulting in a “super-resolution” texture map.
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Figure 2b shows an example from the front wall of the building. Manually editing this
texture map to add rows of windows gives the texture that is used for the final result in
figure 1c. Again, because all the parallel lines in the scene are used to define the vertical,
the difficult spatial extrapolation needed to ensure that the top of the building does not
wobble is solved.

4 Example III: 3D Augmentation

As a final example, we consider the augmentation of a 3D scene with a 3D object. In this
example, we wish to add a 3D box to the roof of the Wilshire building. In order to do so,
we require a 3D coordinate system which has its origin in some known position relative to
the roof, say a corner, and whose axes are parallel to the building sides and to the vertical.

The traditional way of doing this is to manually select some spatial features on the
target object in two widely spaced views, and use these to solve for the 3D coordinate
transformation which aligns a Euclidean coordinate system with the target. Given three
perpendicular 3D lines which are identified over two widely separated views, and a ref-
erence point on the intersection of two of the lines, we solve for the Euclidean transfor-
mation that maps the reference point to the origin and aligns the lines with the coordinate
axes.

A second method is to define an affine coordinate system [13, 14], and represent the
virtual object in that frame. In [14] the affine coordinates are obtained by tracking markers
placed in the scene, and a parallel projection approximation is used. In this work, there
is no such approximation: we use a perspective camera and track the vanishing points of
three sets of parallel lines. The 3D intersection points of the line bundles are estimated as
in � 3.2. Using the three affine directionsj we can rectify the camera matrices to an affine
system with respect to the chosen directions.

Figure 5a is a wireframe detail of 3D augmentation resulting from this technique.
In this instance, vertical lines inserted into the scene appear to drift relative to image
features, this drift being due to error in the computed position of the corresponding hori-
zontal direction. This error arises because the direction is near to the baseline connecting
the cameras, so the 2D lines which intersect its vanishing point in any particular image
provide only a weak constraint on its 3D position. However, not all image constraints
have been enforced—the 3D lines are also known to be coplanar with the vertical lines
on the front of the building, so the 3D direction must also be so. Minimizing the position
of the vanishing point subject to the constraint that it is coplanar with the vertical lines
removes the drift, as shown in figure 5b.

An example of such an augmentation, where a second storey is added to the fore-
ground building is shown in figure 1d. The two methods of estimation show the ad-
vantage of using all the available constraints. In the line bundle method the situation is
near-degenerate and a poor estimate of the direction is obtained, however if planarity is
also imposed the estimation is not degenerate. Of course, many sequences will not pro-
vide such rich geometry, but most allow the extraction of one or two directions, which
can be incorporated similarly.k

A direction is a 3D point on the plane at infinity [18], its homogeneous coordinates arel X m Y m Z mon]p . Its
projection into an image is thevanishing pointof that 3D direction.
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(a) (b)

Figure 5:3D augmentation: detail from Wilshire roof. (a) Unconstrained estimation of the
horizontal direction. (b) Horizontal direction constrained to be coplanar with other lines on
front face.

4.1 Implementation

Estimation of the scene directions involves essentially the same techniques as the estima-
tion of parallel lines above. In this case, we use the estimated directions rather than the
lines themselves. Given three directions and a reference point corresponding to a corner
of the building, a projective transformation of 3-space is chosen which maps the direc-
tions to theX, Y andZ directions, and the reference point to the origin. Then the 3D model
is constructed in this coordinate system and reprojected into the original images.

5 Discussion

This paper has presented a novel paradigm for the execution of augmented reality tasks.
The key concept is that augmentation can be improved by incorporating image-based
cues, much as current manual animators perform a 2D “touch-up” after 3D augmentation,
but automatically.

The technique is not applicable in every situation, as it needs features which can be
tracked to lock down the augmentation. However, it is precisely on scenes where many
such features exist (such as the example sequence) that erroneous augmentation is most
visible. Similarly, we have not made special reference to psychophysics in order to deter-
mine which features are most perceptually relevant.

The paper has also shown that it is relatively easy to identify candidate constraints
that can be applied, but has made no attempt to taxonomize these constraints or to build a
general constraint resolution system [4]. This means that the paradigm currently requires
mathematical expertise on the part of the user. However the basic types of constraint are
limited: coincidence of 2D points, parallelism, tangency etc; so that only a small number
of estimators need to be implemented before the technique is more generally available.
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