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Abstract

We describe a model-based method of generating realistic mass lesions

and placing them in appropriate locations on normal mammogram

backgrounds. These lesions are highly irregular in shape and have

no consistent internal landmarks. Thin plate splines are used both in

modelling the background to each lesion, and to warp examples when

training an appearance model.

1 Introduction

The aim of this work is to generate realistic lesions for the purposes of training

and testing radiologists in a computer-aided learning system. In order to achieve

this, it was neccessary to develop a model of the shape and grey levels of a set of

example lesions. The model had to be capable of coping with examples which have

no consistent landmark points. In addition, a method was required for isolating

each lesion from the background structures upon which it is projected during

imaging. The model may then be used to generate new example lesions consistent

with the training data.

A data set of consecutive abnormal examples was used to provide a represen-

tative sample of mass lesions. A statistical model of where lesions occur within

the breast was built in order to select realistic locations in normal mammograms

at which to place synthetic lesions. The background was subtracted from the re-

gion of each lesion in order to model the attenuation due to the lesion alone. The

edges of the annotated lesion boundaries were re�ned using the subtracted images

to ensure that they were in the correct positions. Landmark points were placed

around the lesion boundaries and a combined model of shape and grey level was

built using thin plate splines. The model was then used to generate new example

lesions, which were superimposed on normal mammogram backgrounds.
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2 Background

One in twelve women develop breast cancer within their lifetimes. In the United

Kingdom women between the ages of 50 and 65 are screened for breast cancer every

three years. The screening procedure involves taking an X-ray of each breast, and

these are examined by expert radiologists in order to detect any abnormalities.

Each �lm is viewed independently by two radiologists, which signi�cantly improves

the detection rate compared to that of a single radiologist. The radiologists are

specially trained in viewing mammograms but their judgements are still prone to

error. Computer vision has the potential to aid or even replace the radiologist

if suÆcient detection performance levels can be achieved. Aid for the radiologist

may be in the form of prompts placed on the screen at locations regarded by

the computer system as suspicious [1] or as part of the training and performance

evaluation process.

Mammography is highly bound by quality assurance procedures and evaluation

of radiologists' performance is a key part of the process. It has been found that

radiologists need to maintain a high throughput in order to perform well. The

aim of any training system is to improve the performance of radiologists so fewer

cancers are missed and fewer healthy women are subjected to unnecessary surgery.

Traditional training methods involve a time consuming process of pulling �lms

from an archive and radiologists may only have access to a limited number of

�lms. Computer-aided learning has the potential to provide a computer-adaptive

approach, which is more 
exible.

A model-based method of describing lesions allows the generation of a very

large number of new examples limited only by the variation within the training

set. There will be no repetition of images, as may be the case during conventional

training, which would lead to some examples being remembered. If the training set

is representative of the screening population, a full range of abnormalities may be

generated. The size of a model is small compared with storing very large numbers

of images, although a range of normal images on which to place the generated

lesions is required. Quantitative analysis of the performance of the radiologist is

possible in a computer-based system. The radiologist's ability to detect certain

types of lesions or lesions in certain locations may be analysed and training sets

loaded to focus on speci�c areas of weakness. This approach would be diÆcult

without the use of synthesized abnormalities.

Previous attempts have been made to model mass lesions in mammograms.

Claridge et al [2] used a simple spherical model of a lesion and blurred the edges

according to measured values of edge blur. Highnam et al [3] used the hint rep-

resentation to produce more complicated synthetic lesions. A spherical model of

attenuation was used along with measured attenuation coeÆcients to calculate

the X-ray attenuation due to a lesion. Morphological operations were then used

to transform the distribution onto an existing shape. Neither of these approaches

attempts to generate new, realistic lesion shapes and consequently neither would

be suitable for our application.
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Figure 1: Sites of occurrence of lesions

within the training set

Figure 2: Glandular tissue distribution

3 Data

102 images were taken from a consecutive sequence of screening mammograms

showing cancerous masses from the Greater Manchester Breast Screening Cen-

tre. The data includes roughly equal numbers of incident, prevalent and interval

cancers. Incident, prevalent and interval cancers are those detected at the �rst

screening visit, at later screening visits and between screening visits respectively.

The abnormalities are all biopsy-proven malignant mass lesions. The lesions may

be spiculated, with radiating linear structures, well-de�ned or ill-de�ned, referring

to the sharpness of the edge. For each �lm the lesion, breast border, pectoral

muscle, glandular region and nipple position have been annotated. In the case of

spiculated lesions, the spicules have not been annotated at this stage because the

process is time consuming and error prone. They will, however be incorporated

into the model later. Images were excluded from the sequence if the lesions over-

lapped the edge of the �lm. The �lms were digitised on a Lumisys 100 scanner at

a spatial resolution of 100� and an 8-bit grey level resolution.

4 Method and Results

4.1 Placing Synthetic Lesions

We have previously modelled the spatial distribution of abnormalities within the

breast [4]. The annotated images were used to warp each image onto the mean

breast shape. The warped lesion outlines were used to create a smooth distribution

of lesions within the breast, shown in �gure 1. The axes represent a straight line

�tted to the pectoral muscle and its perpendicular passing through the nipple. The

results were consistent with radiologists' observations that cancers occur most

frequently in the upper outer quadrant of the breast. A model of underlying

glandular tissue distribution was also developed, since most lesions lie within the

gland disc and this is shown in �gure 2. The distributions may be used to select

realistic locations for generated lesions which are representative of the screening

population.
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4.2 Subtracting Background

4.2.1 Introduction

In order to model mass lesions and superimpose them on normal mammogram

backgrounds, the X-ray attenuation due to the lesion alone must be calculated.

The mammogram is created from the exposure of each part the �lm to the X-ray

beam, which is proportional to the energy imparted by the X-ray beam at that

point. The beam is attenuated by the mammographic structures, which absorb

a fraction of the beam as it passes through. In the lesion region, the beam is

attenuated by a fraction due to the background and a further fraction due to the

lesion. The optical density of the �lm is proportional the log of the exposure. Thus

multiplying the exposure by a fraction (i.e. attenuating the exposure) is equivalent

to subtracting a value from the optical density. The relationship between the �lm

optical density and the grey level values obtained by scanning the �lm with a

Lumisys scanner is linear so adding a value onto the optical density is equivalent

to adding a value onto the grey level. Therefore attenuating the beam by a further

fraction at a given point is equivalent to adding a value onto the grey level of the

digitised image. Alternatively, subtracting a grey level from the image is equivalent

to removing a certain attenuation factor. In order to calculate the attenuation

pattern due to each lesion, a smooth surface was �tted to the background grey

levels around the lesion and subtracted from the original image. If these subtracted

images are modelled, lesions generated from the model may be superimposed on

another mammogram to simulate the resulting increase in attenuation.

4.2.2 Method

A region of interest was taken to encompass each lesion and its surrounding back-

ground. The background may consist of a range of tissue types from fatty (dark)

to glandular (bright). Smaller scale linear structures such as vessels and ducts

may also be present. The grey level values within the lesion must be estimated

using only information from the grey levels outside it. A three dimensional thin

plate spline [5] was used to �t a surface to the background around the lesion and

to interpolate inside the lesion region. The thin plate spline is de�ned by two sets

of corresponding landmarks in three dimensional space. A transformation is then

de�ned from one co-ordinate system to the other for any point.

In this case, the dimensions are the x and y co-ordinates and the grey level

values, and the image is represented as a three-dimensional grey level surface.

Landmark points were placed outside the boundary of the lesion and the spline

was used to de�ne the transformation from the set of points (x; y; 0) to (x; y; z),

where z is the grey level and x and y represent the two-dimensional co-ordinates

of the landmark points. This transformation could then be used to estimate a grey

level value at any point in the region bounded by the landmarks.

4.2.3 Parameter Selection

There are several parameters which may be chosen when de�ning the spline. These

relate to both placing landmark points and smoothing. Quantitative tests were

carried out on patches of normal background in order to optimise the technique and
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Figure 3: Mask Figure 4: Normal mam-

mogram

Figure 5: Background �t-

ted within the mask

determine which parameters to use. Twenty normal background regions of interest

(ROI) were selected from the images in the training set. They were chosen to avoid

the abnormality in each image and to cover a wide range of background tissues.

To de�ne the ROI, the �rst 20 lesion boundaries were taken and superimposed on

the normal background regions. The grey levels within this region were calculated

by �tting a spline to pixels outside the boundary. The di�erence between the real

and �tted grey levels was calculated and the mean absolute error in grey level was

taken as a measure of error in the �tting process.

Tests were carried out by selecting a set of landmarks and smoothing the image

before �tting the spline. Landmarks were placed at equal intervals throughout

the background region. A permitted region was then de�ned and any landmarks

outside this region were ignored. The permitted region was de�ned by repeated

dilation of the lesion boundary, to produce a band the same shape as the boundary.

The standard deviation of the Gaussian �lter used for smoothing, the spacing of

the landmark points and distance of the band from the lesion boundary were

varied in a series of experiments. The same method was used for all 20 of the test

images and the mean and standard deviation of the error were calculated. The

error increased as the band was moved further away from the lesion boundary, as

expected. The spacing of the landmark points had little e�ect on the �tted surface

but the error decreased as the standard deviation of the Gaussian �lter increased.

The best result was a mean grey level error of 4:74� 1:41 on a scale of 0 to 255.

This was achieved with the band of pixels placed as near to the lesion boundary as

possible without the �lter encroaching into the lesion region. An example normal

background, the mask used and the �tted background are shown in �gures 3,4 and

5 respectively. The error in this case was 5:02 grey levels.

When �tting a background to images containing real lesions, it is essential

that the lesion does not contribute to the �tted background. It was observed that

the annotated lesion boundaries sometimes encroached upon the lesion region, al-

though they otherwise seemed correct. The landmarks de�ning the spline were

placed a �xed distance outside the lesion boundary to allow for any inaccuracies.

The band of landmarks was between 20 and 40 pixels from the boundary. The im-

age was smoothed using a 21 by 21 pixel Gaussian �lter with a standard deviation

of 5 pixels. Thus a band of 10 pixels thickness around the lesion is left untouched.
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Figure 6: Lesion Figure 7: Fitted Back-

ground

Figure 8: Grey levels due

only to lesion

Using these settings on the normal background images resulted in a mean error of

5:28 � 1:66 grey levels. An example lesion, the �tted background and the lesion

image after background subtraction are shown in �gures 6,7 and 8 respectively.

The subtracted image has been superimposed on a 
at grey background to improve

visibility.

4.3 Edge re�nement

As mentioned in section 4.2.3, it became apparent that the parts of some lesions

had been annotated incorrectly. The subtracted images were calculated using a

dilated boundary to ensure that the incorrect annotations did not have an e�ect.

However, if an accurate model of the subtracted lesion grey level and boundary is

to be built, the boundary must be in the right place. The majority of malignant

lesions have blurred edges, and in any case a small amount of blurring is inherent

in the imaging process, so one would expect the attenuation contribution at the

edges of lesions to be very low. In some cases the annotated border overlaps part

of the lesion; this would result in the model generating unrealistically high grey

level values at the edges of lesions. Since we are currently unable to obtain expert

re�nement of the annotations, we have used a simple, automatic method, which

alters the boundary at pixels which deviate from the mean grey level around the

boundary. In this way, bright boundary pixels are identi�ed as being within the

lesion and the boundary moved outward accordingly. This process is repeated for

a number of iterations and eventually converges.

4.4 Appearance Modelling Using Thin Plate Splines

4.4.1 Introduction

An appearance model [6] is a combined statistical model representing the shape

and grey level in an image. A training set of images is required in which all of

the images have a consistent set of corresponding landmarks de�ned. The �rst

step is to build a statistical model of shape variation. The landmark points are

all aligned into a common co-ordinate frame and each shape may be represented

by a vector x. Principal component analysis (PCA) is then performed on the

normalised vectors. Any example x can then be represented as a weighted sum of
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orthogonal modes

x = �x+ Psbs (1)

where �x is the mean shape, Ps is a set of orthogonal modes of shape variation

and bs is a set of shape parameters.

A similar model of grey level is then built. Each example image is warped to the

mean shape and a grey level sample vector g is taken from the image. However, the

vectors are not normalised before PCA is performed. This is because the sample

vectors contain attenuation information, which would be distorted by scaling and

shifting them. A grey level sample vector g may then be expressed as a weighted

sum of orthogonal modes

g = �g + Pgbg (2)

where �g is the mean shape, Ps is a set of orthogonal modes of grey level variation

and bs is a set of grey level parameters. Shape and grey level variations may be

correlated so the two models are combined to form a model of appearance. A

concatenated vector is generated for each example and PCA is again applied to

the data to give orthogonal modes of combined shape and grey level variation. The

shape and grey level vectors must be weighted in order to allow for the di�erence

in units between the shape and grey level models. The concatenated vector b is

calculated for each example as follows

b =

�
Wsbs

bg

�
=

�
WsB

T
s (x� �x)

P
T
g (g � �g)

�
(3)

After applying PCA to these concatenated vectors, each example vector b may

be represented as follows

b = Qc (4)

where Q are the eigenvectors of b and c is a vector of appearance model param-

eters. An example image is regenerated from the model by warping the shape-free

grey level sample vector onto the original landmark points. Note that the shape

vectors have been normalised; to reconstruct the original image the inverse trans-

form must be applied to the shape vectors by scaling and shifting them accordingly.

4.4.2 Adapting the Models to Lesions

Applying appearance models to lesions poses several problems. Ideally, landmarks

should be placed on consistent features present in all images, for example the eyes,

nose and mouth for face images. Lesions have no consistent internal features, so

points were placed at equal intervals around the boundary. An orientation was

de�ned for each lesion by drawing a straight line from the nipple through the

centre of the lesion. This was chosen as the most reasonable orientation due to the

branching nature of the ducts which open at the nipple; many lesions develop in

these structures. Two landmarks were de�ned by taking the intersection of the line

and the boundary and a further 75 were placed between the two landmarks at equal

spacings along the boundary on either side to give a total of 152. The number of
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landmarks was chosen to give a spacing of about 5 pixels on a boundary of average

length, which should be suÆcient to describe irregularities in the boundary.

Previous applications of appearance models have used Delaunay triangulation

to warp each shape onto the mean before sampling grey levels and reconstructing

examples from the sample vector [6]. Triangulation involves drawing a mesh of

triangles between the landmark points in each image. Triangles are then matched

in di�erent images and warping one image onto another involves bilinear interpo-

lation of the grey levels within matching triangles. Appearance models have been

applied to faces [6], which have regular outlines and internal landmarks. De�n-

ing a triangulation for lesion outlines is more diÆcult, as there are no internal

landmarks and a zigzag pattern of long, thin triangles would be the result. The

triangulation could be improved by de�ning the centre of the lesion as a landmark

and drawing triangles radially outward from it. This results in triangles which are

still long and thin but which are all of a fairly similar size. A more serious problem

is the fact that the lesions sometimes have bulbous emanations. This would result

in triangles disappearing or being 
ipped over. It was decided to use thin plate

splines [5] to perform warping. This means that the landmarks on the boundary

can be used and no internal points need to be de�ned. The method does not su�er

from any of the drawbacks which occur with the conventional method, Delaunay

triangulation.

4.5 Generating New Examples

Each example in the training set may be represented as a weighted sum of combined

model parameters (4) so for each parameter there is a distribution of weights. A

new parameter vector was generated by sampling each element of the vector from

the corresponding cumulative distribution function of the training set parameter

vectors. The advantage of this method is that no values outside the range of the

data are selected and the distribution is not assumed to be normal. However,

interdependencies between modes are not yet taken into account. In order to

reconstruct a new example from the parameter vector, the shape vectors must be

rescaled. Currently, the scale value is sampled from the distributions of scales in

the training set. In the �nal system, it will be necessary to model the relationship

between the scale and modes. An example normal background is shown in �gure

9 and the same background with a synthetic lesion superimposed upon it is shown

in �gure 10.

5 Discussion

The main advantage of this approach is that everything is based on real data. The

shape and grey level of lesions is modelled in such a way as to allow generation

of a very large number of examples. Using the thin plate spline as part of an ap-

pearance model leads to much better results with this data than if a triangulation

had been used. There is potential to use this in other applications to improve the

warping, although it is more computationally expensive, which may be important

when using the active appearance model for searching. The background subtrac-

tion method proposed here allows the extra attenuation due to the lesion to be
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Figure 9: Normal Background Figure 10: Synthesized lesion

modelled directly. There are, however, errors involved in the background sub-

traction process, as linear structures or parenchymal patterns which only appear

within the lesion region will not be modelled. The method may be improved by

trying to detect such structures in the lesion region and correcting the subtraction

accordingly.

The method currently used to generate new examples is very simple and doesn't

take into account any interdependency between modes or any relationship between

the size and the feature vector. The brightness of a lesion is related to the thickness

of the tissue, so bigger lesions should normally appear brighter. This could be

improved by modelling scale in the same way as shape and grey level, which would

result in a set of modes containing scale parameters. Although the generated

parameters are all within observed ranges, combinations may be selected which

do not actually occur. Further work will be carried out to investigate whether

generated sets of parameters are realistic.

Another problem with this approach is the loss of resolution due to sampling

grey levels from lesions of varying size. This can be minimised by using a large

sample vector; since the generated lesions are superimposed on noisy mammogram

backgrounds, the loss of resolution may not be easily visible.

We have not yet considered spicules. The spicules will be annotated by an

expert radiologist and modelled separately from the central mass. This is because

a boundary with spicules has a spiky appearance, which would be diÆcult to model

as the spikes can occur at any position around the boundary. A central mass could,

however, be generated using the technique described and the number, position and

appearance of spicules could then be modelled and joined to the generated mass

at appropriate points on the boundary by distorting the generated boundary at

those points.

6 Conclusions

We have addressed the problem of producing training and test images for radiol-

ogists. These are necessary for computer-adaptive CAL systems and for quality
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assurance in breast screening. The model could be developed further to aid both

detection and diagnosis of mass lesions.

The appearance modelling approach has been adapted to cope with cases with

irregular, highly variable boundaries and no consistent internal landmarks. The

technique appears to work well and is capable of producing a wide range of realistic

synthetic lesions. Problems with the approach, such as the modelling of scale

parameters, will be addressed and the model will also be expanded to include

spiculated lesions.

We are currently carrying out a study to determine whether radiologists can

distinguish between real and synthetic lesions; preliminary results suggest that the

synthetic lesions will be suÆciently realistic for training and test purposes.
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