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Abstract

The paper proposes a reliable method for estimating second-order sur-

faces from 3D range data in the framework of object recognition and

localization or object modelling. Instead of estimating such surface

individually the approach �ts all the surfaces captured in the scene to-

gether, taking into account the geometric relationships between them

and their speci�c characteristics. The technique is compared with other

methods through experiments performed on real objects and demon-

strates that the use of constrained relationships improves shape estim-

ates.

1 Introduction

Common second-order surfaces such as cylinders, cones and spheres are found in

most manufactured parts and objects. A reliable estimation of these surfaces is

a fundamental requirement in many applications, for instance in the framework

of model-based recognition and localization of objects from range data where

the parameters of the surfaces are used for detecting plausible correspondences

between model and scene or between surfaces extracted from di�erent views for

registration purposes. An accurate and reliable estimation of surfaces is also an

essential requirement in object modelling or reverse engineering, where a faith-

ful model is needed to be extracted from the set of range data for CAD/CAM

purposes.

One obstacle to achieving this goal is the inaccuracy of shape estimates from

extracted patches. This problem results from the limited �eld of view of the sensor

which can only cover a partial area of an object in a given view, self or external

occlusion of the object and �nally some surface data is lost during the surface

segmentation process either due to segmentation failure or intentionally in order

to avoid unreliable data. The usable set of data points may thus represent only a

small area of the surface and consequently give unstable estimates of the surface

shape. Furthermore the remaining available data is corrupted by measurement

noise. Consequently conventional least squares quadric surface �tting often fails to

give a reliable estimation of the surface shape. The estimates are highly biased and

may not re
ect the actual type of the surface even when sophisticated techniques

are applied.

The idea presented here is to compensate the poorness of information embodied

in the quadric surface data by extra knowledge about the surface such as its

BMVC99

275

BMVC 1999 doi:10.5244/C.13.28



type and relationships with other nearby surfaces. This additional information is

either provided by the model in the case of model-based applications or could be

deduced from a set of potential hypotheses generated, checked and veri�ed within

a perceptual organization process. The exploitation of this extra information is

quite feasible since a patch is rarely captured alone in the scene but rather with

close or adjacent surfaces which could be either planes or quadrics. This paper

shows how the extra information can be represented in a shape estimation process

and then evaluates the estimation process against several alternatives, concluding

that the extra information is both e�ective and easy to exploit.

2 Problem statement and related work

A second-order surface S is represented by the implicit function:

f(x; y; z; ~p) = ax2+by2+cz2+2hxy+2gxz+2fyz+2ux+2vy+2wz+d= 0 (1)

Given a set of N measurement points Xi we want to �nd the parameter vector

~p = [a; b; c; h; g; f; u; v; w; d] such that the function de�ned by (1) re
ects as well

as possible the actual shape of the surface. The type and shape characteristics of

the surface are deduced afterwards from ~p.

A reasonable criterion to judge the goodness of the solution is the sum of the

squared Euclidean distances between each measurement point and the surface:

J =
PN

i=1 d(Xi; S)
2. The parameter vector minimizing this criterion is the best

solution in the least squares sense. Unfortunately the non-linearity of this distance

measure does not lead to a nice and easy closed-form solution for the parameter

vector ~p. Various approximations of this distance have been therefore proposed

in the literature to make the minimization problem easier. The most common

one is using the value of the implicit function f(x; y; z) known as the algebraic

distance. It has been used in recovering planes and quadrics [3, 6]. Although

this approximation is highly attractive because of its closed-form solution, it was

subject to many criticisms since it leads to a highly biased estimation for small

surfaces with low curvature. An improved approximation was suggested by ex-

panding the implicit function into Taylor's series up to �rst or second degree. The

�rst approximation is given by:
f(x;y;z)2

k ~rf (x;y;z)k2
. Taubin [12] noted that for the sur-

faces with constant gradient the estimation based on the �rst approximation is the

solution of a generalized eigenvalue problem: H~p = �DH~p, where H =
P

i
~hi ~hi

T
,

DH =
P

i dhidh
T
i ,

~hi = [x2i ; y
2
i ; � � � ; 1]

T and dhi is the Jacobian matrix of hi with

respect to [xi; yi; zi]

Other than this case the problem is a non-linear minimization which needs

to be solved iteratively, e.g the algorithm proposed by Kumar et al [8] for �t-

ting Hyperquadric surfaces. When the gradient of the surface vanishes, the �rst

approximation is no longer valid. To avoid this singularity problem Taubin [13]

introduces a high order approximate distance and estimates the solution with a

non-linear �tting procedure. Lei and Cooper [9] used both the �rst and second

approximation for �tting 2D curves but they convert the minimization problem

to linear programming optimization by using the measurements points as control

points constraining the shape of the curve. Sullivan et al [11] minimized the sum
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of the exact geometric distances and consider the implicit function representing

the surface as a constraint function. They solved the problem with an iterative

algorithm using Levenberg-Marquardt technique and Newton method.

Another way to consider the Euclidean distance is to use a speci�c represent-

ation function for a particular case of quadric surface, like the circular cylinder,

circular cone and sphere. A circular cylinder can be de�ned by:

(x�x0)
2+(y�y0)

2+(z�z0)
2
�(nx(x�x0)+ny(y�y0)+nz(z�zo))

2
�r2 = 0 (2)

where ~Xo = [x0; y0; z0]
T is an arbitrary point on the axis, ~n = [nx; nz; ny]

T is a

unit vector along the axis and r is the radius of the cylinder. A circular cone can

be represented by:

[(x�xo)
2+(y�yo)

2+(z�zo)
2]cos2(�)� [nx(x�xo)+ny(y�yo)+nz(z�zo)]

2 = 0

(3)

where [xo; yo; zo]
T is the apex of the cone, [nx; ny; nz]

T is the unit vector de�ning

the orientation of the cone axis and � is the semi-vertical angle. A sphere can be

de�ned by:

(x� x0)
2 + (y � y0)

2 + (z � z0)
2
� r2 = 0 (4)

where [xo; yo; zo]
T is the centre of the sphere and r is its radius. This representation

and a slightly di�erent one (replacing the orientation vector by two angles) were

used respectively in [1, 5]. In both works the solution was found with a non-linear

optimization.

A common characteristic of these works is that they treated each single surface

individually. When the quadric patch to be �tted covers a small amount of the

surface, the �tting technique fails to give a reasonable estimation of the surface and

often the estimates are highly biased. This is expected since second order functions

can easily trade-o� curvature and position to produce similar error measures. Thus

small patches do not provide su�cient extent to distinguish between the two cases.

However if we place ourselves in an object recognition and localization frame-

work we usually have to �t many surfaces belonging to the same object and which

are linked by some geometrical and topological relationships. By exploiting this

knowledge together with the information which may be available about the quad-

ric type and shape we hope compensate the lack of information in the quadric

patch and obtain therefore a surface parameterization as accurate as possible.

3 Principle of the approach

Consider a set of M surface patches of an object extracted from a given view. We

assume that the set may contain quadric and planar patches. By considering the

algebraic distance, the minimization criterion related to the surface k has the form

Jk =

NkX
i=1

f(xi; yi; zi; ~pk)
2 (5)

for Nk data points [xi; yi; zi]
T lying on the surface. This expression can be put into

the form Jk = ~pk
T
Hk ~pk where ~pk is the parameter vector and Hk is a nonnegative,
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de�nite and symmetric matrix: Hk =
PNk

i=1
~hi ~hi

T
, ~h is a vector function at the

measurement point (x; y; z). e.g for a plane and a quadric ~h is de�ned respectively

by [x; y; z; 1]T and [x2; y2; z2; 2xy; 2xz; 2yz; 2x; 2y; 2z; 1].

A global minimization criterion for all the surfaces is the sum of all the single

criteria J = J1 + J2 + � � � + JM = ~pTH~p where ~p is a global parameter vector

concatenating all the single parameter vectors and H is a global data matrix

containing the set of matrices Hk. H is nonnegative, de�nite and symmetric as

well. The relationships between the di�erent surfaces and the shape characteristics

of the surfaces are formulated into a set of vector functions

Cj(~p); j = 1::K (6)

Examples of these functions are given in Section 5. So the problem can be seen

as a constrained optimization problem where we have to determine the parameter

vector ~p minimizing ~pTH~p subject to the constraints (6). As we will see with

the test objects, most of the constraint functions are non-linear making thus the

development of a closed form solution or the application of linear programming

techniques quite hard or impossible. The problem belongs to the category of

quadratic objective function with non-linear constraints. These problems are well

behaved if the constraint functions are continuous and di�erentiable and convex

[4]. We propose a matrix formulation of the relationships and the shape character-

istics which satis�es these requirements. Furthermore this representation ensures

compact form and avoids expressions with many variables.

The estimation of the parameter vector is achieved with a sequential uncon-

strained technique [14]. We consider the following optimization function

E(~p) = ~pTH~p+

KX
k=1

�kCk(~p) (7)

where the second term is a penalty function consisting of the sum of squared con-

straint functions weighted each by a positive value �k . The algorithm increments

sequentially the set of weights and at each step (7) is minimized with the standard

Levenberg-Marquardt technique and the vector ~p is updated. The problem of the

ill-conditioned Hessian matrix appearing for high values of � is tackled by by ad-

opting the technique proposed by Broyden et al [2] and extended to many di�erent

weighting values �. The algorithm stops when the constraints are satis�ed to the

desired degree or when the parameter vector remains stable for a certain number

of iterations. The initial parameter ~po is determined by estimating each surface

individually with a generalized eigenvalue technique [3] and then concatenating all

the vectors into a single one.

4 Parametrization of the cylinder, the cone and

the sphere

A cylinder or cone patch is related to another surface by its relative orientation and

position. Since a sphere has no orientation only its relative position will be con-

sidered. The circularity of a cylinder or a cone is additional knowledge about the
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quadric shape which should be taken into account as well. Unfortunately the coef-

�cients of the implicit function (1) do not have obvious geometric signi�cance. For-

mulating the geometric relationships only with these parameters leads to complex

constraint functions often with singular cases. To avoid this problem, we introduce

the orientation of the quadric axis de�ned by a unit vector [nx; ny; nz]
T as additive

parameters for the cylinder and the cone. Each of these two surfaces will be de�ned

then by the following parameter vector: [a; b; c; h; g; f; u; v; w; d; nx; ny; nz]
T . This

representation over-parameterizes the quadric; in return it allows a simple for-

mulation of the geometric relationships between cone, cylinder and other sur-

faces e.g. the relative orientation between a plane and a quadric is expressed by:

~nc
T
~np � cos(�) = 0 where � is the angle between the plane's normal ~np and the

quadric axis unit vector ~nc .

Based on the above parametrization the circularity of the cylinder is expressed

by the following equations:

a = 1� n2x

b = 1� n2y

c = 1� n2z

h = �nxny (8)

g = �nxnz

f = �nynz

and for the cone by:

a� b = n2x � n2y

a� c = n2x � n2z

b� c = n2y � n2z

h = nxny (9)

g = nxnz

f = nynz

These relations are obtained by expanding the equations (2) and (3) and identi-

fying with the general quadric equation (1).

A sphere is characterized by equal coe�cients for the x2, y2 and z2 terms and

vanishing coe�cients for the cross products terms. Its representation is:

a(x2 + y2 + z2) + 2ux+ 2vy + 2wz + d = 0 (10)

5 Experiments

A series of experiments were performed on several real objects having planar and

quadric surfaces. Because of the limited space only 5 objects are presented in

this paper (Figure 1). The segmentation and the extraction of the surfaces were

performed with rangeseg [7].

Our approach has been compared with three main techniques covering a large

part of the spectrum of the �tting techniques developed in the literature. These

techniques are the eigenvalues solution based on the algebraic distance [3, 6], the

eigenvalue technique [12] based on the approximation of the Euclidean distance
f(x;y;z)2

k ~rf(x;y;z)k2
and the iterative optimization technique [1, 5] based on the speci�c

representation of quadric (8), (9) and (4), for the circular cone, the circular cyl-

inder and the sphere. In the rest of the paper these techniques will be referenced
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respectively by AD, AED, SR and the new suggested global �tting approach by

GF. The performances of the di�erent techniques are evaluated by comparing the

shape parameters of the quadrics, for instance the half angle for the cone and

the radius for the cylinder and the sphere. The computation time was taken into

account as well. With AD, and AED the estimation time is almost instantaneous,

whereas it varies from half an hour to several hours for the SR depending on the

number of measurement points. For the GF technique it in the range of minutes.

The di�erent techniques procedures were implemented with Matlab on 200 MHz

Sun Ultrasparc workstation.

Consider object 1 composed of a cone and a plane base (Fig.1.(a)) The axis of

the cone is perpendicular to the plane. This constraint is imposed by associating

a single normal vector to both the orientation of the cone axis and the plane's

normal. The object is then represented by the parameter vector:

~p = [a; b; c; h; g; f; u; v; w; d; nx; ny; nz; l]

where l is the distance parameter of the plane. The minimization criterion is:

J = ~pTH~p; H =

�
Hcone (O)

(O) Hplane

�

where Hcone and Hplane are the data matrix of the cone surface and the plane

surface respectively. The constraint function associated to the circularity of the

cone is deduced from (9) and by using a vector function formulation the penalty

function associated to this shape constraint is: Ccirc(~p) =
P6

i=1(~vi
T
~p � ~pTAi~p)

2

where ~vi and Ai are appropriate vectors and matrices [14]. To ensure the unity

of the normal vector [nx; ny; nz]
T we introduce the penalty function: Cunit(~p) =

(~pTU~p � 1)2 where U is an appropriate matrix. The optimization function (7) is

thus set up as follows: ~pTH~p+ �1Cunit(~p) + �2Ccirc(~p).

The results obtained with the di�erent techniques are grouped in Table 1.(a)

except for the AED since a cone surface does not have a constant gradient value.

The AD technique gives an elliptic cone, whereas the SR and GF ensure a faithful

shape estimate and relatively better accuracy with the GF. The computation time

for the SR is in the order of 30 min whereas it is 2 min for the GF.

For object 2 (Fig.1.(b)), a small part of the cylinder surface is visible (about

20%). The cylinder is circular and its axis is orthogonal to plane 1 and parallel to

plane 2. These constraints were considered in the �tting technique. Table 1.(b)

summarizes the results. The SR �tting took 40 min whereas the GF only 3mn.

Object 3 is a miniaturized plant model. Two cylinders and two planes were

extracted from the view shown in Figure 1.(c). Cylinder 1 and cylinder 2 are

orthogonal respectively to plane 1 and plane 2. They are also mutually orthogonal

and circular. The computation time with SR is about 30 min for each cylinder

and 5min with GF. The di�erent estimates are presented in Table 1(c).

Object 4 (Fig.1.(d)) contains a circular cone and a circular cylinder having

perpendicular axes. The cylindrical patch covers nearly 20% of the whole cylinder

and the cone patch around 30 %. We have not considered the relationships between

the two lateral planes and the quadric surfaces but they can be also integrated

without any particular di�culty. Since the patches contain a large amount of data
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plane

cone 

plane 1

plane 2

cylinder

(a) object 1 (b) object 2

plane 1
cylinder 1

plane 2

cylinder 1 cylinder 2

cyinder 2

(c) object 3

cylinder

cone

cylinder 

sphere

(d) object 4 (e) object 5

Figure 1: Examples of the objects used in the experiments with the extracted surfaces.
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AD AED SR GF true surface

ell.cone: - cir.cone cir.cone cir.cone

�max = 21:41o - � = 20:77o � = 19:68o � = 20o

�min = 20:19o -

(a) object 1: Estimates of the cone surface.

AD AED SR GF true surface

ell.cylinder ell.cylinder cir.cylinder cir.cylinder cir.cylinder

rmax = 30:41 rmax = 41:58 r = 44:25 r = 44:62 r = 45

rmin = 17:50 rmin = 37:80

(b) object 2: Estimates of the cylinder patch.

AD AED SR GF true surface

ell.cylinder ell.cylinder cir.cylinder cir.cylinder cir.cylinder

r1max = 17:69 r1max = 9:01 r1 = 8:08 r = 7:44 r1 = 7:50

r1min = 12:12 r1min = 8:13

r2max = 4:96 r2max = 5:67 r2 = 5:23 r2 = 4:95 r1 = 5:00

r2min = 4:28 r2min = 5:24

(c) object 3: Estimates of the cylinder patches.

AD AED SR GF true surface

ell.cylinder ell.cylinder cir.cylinder cir.cylinder cir.cylinder

rmax = 46:10 rmax = 57:62 r = 59:81 r = 59:54 r1 = 60

rmin = 33:66 rmin = 55:42

ell.cone - cir.cone cir.cone cir.cone

�max = 28:86o - � = 26:84o � = 31:80o � = 30o

�min = 25:19o -

(e) object 4: Estimates of the cylinder and the cone patches.

AD AED SR GF true surface

ell.cylinder ell.cylinder cir.cylinder cir.cylinder cir.cylinder

rmax = 14:46 rmax = 14:64 r = 14:98 r = 14:95 r = 15:00

rmin = 13:51 rmin = 14:01

sphere sphere sphere sphere sphere

r=15.03 r=15.05 15.03 15.03 15.00

(d) object 5: Estimates of the cylinder and the sphere patches.

Table 1: Estimates of the object surfaces.
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points (nearly 25000 and 7000 points for the cylinder and the cone respectively)

the SR �tting is quite high time consuming, about six hours for the cylinder and

around two hours for the cone. With the GF the two surfaces are simultaneously

estimated in 5 min. The di�erent estimates are summarized in Table 1(d).

Object 5 (Fig.1.(e)) contains a circular cylinder and a half sphere. The two

surfaces have the same radius and the axis of the cylinder goes through the centre

of the sphere. In the view shown in Figure 1 nearly a quarter of the sphere and

half of the cylinder are visible. The SR �tting time is two hours for the cylinder

and 20 min for the sphere. With the GF it is 4 min. The estimates are shown in

Table 1(e).

6 Discussion and Conclusion

It is clearly noticed from the di�erent tables related to objects having circular

cones or circular cylinders that when the shape of the surface is not constrained

the AD and AED algorithms do not guarantee a faithful shape estimation. Both

techniques result in elliptic cones or elliptic cylinders with a bias more or less

important depending on how much the patch covers the quadric and the number of

measurement points in each patch. However the AED technique estimates are less

biased. Figure 2 illustrates the di�erence where the bias in the shape estimates

is expressed in terms of the (minor axis/major axis) ratio. The same aspect is

noticed for the cones if we compare the cone estimates for object 1 (Table 1.(a) )

and object 4 (Table 1.(d)).

27%

50%         50%            50%  

31%

13%

6%

ob3(c1)    ob3(c2)      ob5
20%

42%

ob2 ob4
20% 20% 50% 50% 50%

3%
10% 7% 4%

ob4 ob3(c1) ob3(c2) ob5
20%

9%

ob2

(a) (b)

Figure 2: shape bias in the cylinder estimates (ob:object, c1:cylinder1,etc.). (a) with the AD

technique, (b) with the AED technique

By imposing the circularity constraint the SR and the GF give faithful estim-

ates in terms of shape and parameter values. It is noticed however that the results

are usually more accurate with the GF. This suggested that by taking into account

the di�erent position and orientation relationships constraining the location of the

quadric surface the estimate is greatly improved. When a speci�c algebraic func-

tion is used for the sphere (10) all the techniques give accurate estimates (Table

1.(e)).

The computation time is dramatically high with the SR technique, and may

take hours for surface with large amounts of data. This is normal with this non-
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linear representation where the data terms can not be grouped and cumulated

separately. The GF technique has very reasonable processing time (in the order

of few minutes) for all the objects regardless the amount data points.

Although it is not the objective of this work we believe that the consideration

of all the known relationships between the quadric surface and other surfaces very

likely shifts the position of the surfaces towards the actual one in the sense that

incorporating these constraints may compensate up to certain degree for the e�ects

of systematic errors. This aspect was mentioned in [1] for the circularity of the

quadric. Generalizing this aspect for geometric relationships between surfaces can

be a worthwhile future work.

The optimization technique used in the GF algorithms supposes a reasonable

initialisation of the surface parameter vector. Although this condition limits the

�eld of application of the technique, it is well satis�ed in our framework. We

propose to use the estimates given by the AD or when possible the AED as ini-

tialization. 1
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