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Abstract

We present an approach for 3D reconstruction of objects from a single image.
Obviously, constraints on the 3D structure are needed to perform this task. Our
approach is based on user-provided coplanarity, perpendicularity and parallelism
constraints. These are used to calibrate the image and perform 3D reconstruction.
The method is described in detail and results are provided.

1 Introduction

Methods for 3D reconstruction from images abound in the literature. A lot of effort has
been spent on the development of multi-view approaches allowing for high accuracy and
complete modeling of complex scenes. On one hand, research is directed towards com-
pletely automatic systems; these are relatively difficult to realize and it is not clear yet if
they are ready for use by a non expert. On the other hand, commercial systems exist, but
they usually require a high amount of user interaction (clicking on many points in many
images) or a special camera setup (e.g. using structured light).

The guideline of the work described here is to provide an intermediate solution, recon-
struction from a single image, that needs relatively little user interaction. Naturally, there
are limits on the kind of objects possible to be reconstructed and on the achievable degree
of completeness of reconstructions. However, our results suggest that such a minimal
solution for reconstruction might be quite useful, e.g. for visualization and augmented
reality purposes.

Work on reconstruction from single images has been done by others. Shum et al.
describe a method similar to ours in [6]. Their method, however, allows to reconstruct
only planes whose vanishing lines can be computed from two or more sets of parallel
lines, whereas our method can also reconstruct arbitrary planes, thus leading to a wider
class of objects that may be reconstructed. Liebowitz et al. describe two different methods
for single-view 3D reconstruction in [5]. The first method achieves the reconstruction
by measuring heights of points with respect to a ground plane. The drawback of the
method is the requirement of the foot point for each 3D point to be reconstructed, i.e. the
image of the vertical intersection with the ground plane. This puts a limit to the nature
of objects that may be reconstructed. The second method of Liebowitz et al. requires,
like the method by Shum et al., the computation of the vanishing lines of all planes to
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be reconstructed. Their method also appears to be less straightforward than the one we
describe in this paper, e.g. it performs intermediate rectifications of the images of planar
patches that might perhaps be omitted.

Reconstruction from single images requires geometrical constraints on the 3D struc-
ture of the observed object. The approach described in this paper is based on three types
of constraints: coplanarity of points, perpendicularity of directions or planes and par-
allelism of directions or planes. Perpendicularity constraints are used to calibrate the
image. Together with parallelism constraints they provide the vanishing geometry of the
scene which forms the skeleton of the 3D reconstruction. Coplanarity constraints are used
to complete the reconstruction, via alternating reconstruction of points and planes.

The paper is organized as follows. In §2, we describe our camera model and the
computation of vanishing points and lines. Details on calibration and 3D reconstruction
are given in §§3 and 4 respectively. The complete algorithm is summarized in §5. §6 gives
an example of how the algorithm works and presents some results. Conclusions are given
in §7.

2 Background
2.1 Camera Model

We use perspective projection to model cameras. A projection may be represented by a 3 x
4 projection matrix P that maps points of 3-space to points in 2-space: q ~ PQ. Here, ~
means equality up to a non zero scale factor, which accounts for the use of homogeneous
coordinates. Since we consider a single view and may chose the 3D reference frame
arbitrarily, we align it with the camera, leading to the simple projection matrix P ~
( K |0). Here, K is the 3 x 3 calibration matrix:

Tf s ug
K= 0 f Vo
0 0 1

In general, we distinguish 5 intrinsic parameters for the perspective projection model:
the (effective) focal length f, the aspect ratio 7, the principal point (ug, vo) and the skew
factor s accounting for non rectangular pixels. The skew factor is usually very close to 0
and we ignore it in the following.

2.2 Vanishing Points and Lines

We compute vanishing points as the least squares solution for the intersection of sets of
images of parallel 3D line segments. The information of line segments being parallel is
provided by the user.

Vanishing lines are determined from vanishing points and parallelism constraints. The
assumption that a vanishing point v belongs to a 3D direction parallel to a plane implies
that v lies on the vanishing line 1 of that plane. Hence, two or more vanishing points
parallel to a plane define its vanishing line.

A vanishing point v that belongs to the 3D direction perpendicular to a plane, com-
pletely defines the vanishing line (if the image is calibrated): 1 ~ K- TK~1v.
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3 Calibration

In the following, we derive calibration equations that are based on vanishing points of
pairs of perpendicular directions. This approach is well known (cf. e.g. [1]); we briefly
describe it and give then a closed-form solution for the focal length which is usually the
only intrinsic parameter that we calibrate in practice.

Let v, and v be the vanishing points of two perpendicular 3D directions. Let the ideal
points of the 3D directions be written as: (V7 0)T and (V7], O)T. From the projection
equations v; ~ KV; and vo ~ KV, we compute the ideal points as:

Vi ~ K_1V1
V2 ~ K71V2 .

The 3D directions being perpendicular means that V|V, = 0, hence:
viKTTK™ vy =0 . (1)

This equation is homogeneous linear in the coefficients of the symmetric matrix w ~
K~TK~! (which represents the image of the Absolute Conic). Having determined w,
using equations (1) or other means, the calibration matrix K may be computed uniquely
using Cholesky decomposition [4].

Each pair of perpendicular vanishing points gives one constraint on the intrinsic pa-
rameters in K. In a man-made environment, we will typically observe three pairs of mutu-
ally perpendicular vanishing points, sometimes more, sometimes only a single pair. This
puts a limit on the number of intrinsic parameters that may be computed. The aspect ratio
T can often be assumed to be known. Depending on the number of calibration equations,
we may estimate the principal point and the focal length. For the experiments described
later, we assumed that the principal point is in the center of the image, and only estimated
the focal length.

The equations for the focal length are particularly simple. We may decompose the
calibration matrix in its known and unknown parts:

7 0 Ug f 0 0
K= K1K2 = 0 1 Vo 0 f 0
0 0 1 0 0 1

Transforming the vanishing points by Kj:
v;) ~ Ky 1vp

we obtain points v;, for which the calibration equation (1) takes on the simple form:

0
0)vi=0. 2
fz

The least squares solution for a set of equations (2) is given by:

1 0
v o 1
0 0

! ! ! ! ! !
ZV;J_v; Up,3vq73(vp71vq71 + Up,quJ)

Zv; Lv; (U;,BU;,B)Z

fP=-
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Before solving for f, the v;) should be normalized to unit norm.

What we observe is that vanishing points that lie on the ideal line in the image are use-
less for focal length calibration (the term v, sv; 5 in the denominator is zero here). This
means that the vanishing points that correspond to directions that are parallel to the image
plane, are useless, so we need at least two finite vanishing points that are perpendicular.
These considerations tell us how to position the camera to successfully calibrate it. Note
that vanishing points at infinity will not badly influence the determination of the focal
length: the term in the denominator will be zero and the term in the numerator very close
to zero, so they won’t affect the sums in the equation. Infinite vanishing points might be
used for the determination of other intrinsic parameters, if required.

The images used in our experiments (see figures 3 and 4) only show small amounts of
optical distortion. However, wide-angle views which are likely to be used for single-view
3D reconstruction, might require distortion removal prior to calibration and reconstruc-
tion. The automatic method by Devernay and Faugeras [2] might be used. Distortion
removal can also be achieved in a very simple way by manually adjusting the dominant
first coefficient of radial distortion, by the aid of a slider provided by the graphical user
interface, such as to make line segments in the image roughly straight.

4 3D Reconstruction

The principal aim here is to reconstruct a set of 3D points and planes. Sets of coplanar
3D points define polygons onto which texture can be mapped for visualization purposes.

We assume that vanishing points and lines have been computed where possible and
that the image has been calibrated as described in the previous section. This enables us to
backproject image points to 3D along their projection rays — a 3D point whose image is

given by q, has coordinates:
A !
Qz(?>, 3)

where ' ~ K~!q and q' has unit norm. The unknown X\ expresses the distance of Q
from the optical center and hence defines its position on the projection ray.

If we know the vanishing line of a 3D plane, its position is also defined up to one
unknown. Let 1 be the vanishing line and n ~ KT1 such that n has unit norm. Then, the
3D position of any plane whose vanishing line is 1, is given by:

n
n:(& . @)

The vector n is the plane’s normal and d the plane’s distance from the optical center.
Unless a reference distance in the scene is known, 3D reconstruction can be achieved
up to a global scale factor only. Hence, we are free to set the position of one point (along
its projection ray) or one plane (while preserving its vanishing line). Suppose, we have
fixed one point Q. The position of planes with known vanishing lines and containing Q
is then completely defined. Other points lying on these planes may then be reconstructed,
by simply intersecting the projection rays with the planes. In turn, other planes may then
be reconstructed using the available points, and so on. This alternation scheme allows to
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reconstruct objects whose parts are sufficiently “interconnected”, i.e. the points on the
object have to be linked together via coplanarity or other geometrical constraints.

In the following, we describe an extension of this basic reconstruction scheme. Basi-
cally, we bootstrap the alternating point-plane reconstruction scheme via the simultaneous
reconstruction of a set of points and a set of planes that are linked together in a way de-
scribed below. This is the central part of our reconstruction method. Other modules used
for reconstruction are described in §4.2. The complete algorithm is given in §5 and the
way it works is illustrated in §6.

4.1 Simultaneous Reconstruction of Points and Planes

The coplanarity constraints provided by the user are in general overconstrained, i.e. sev-
eral points may lie on more than one plane. This means that, due to image noise, it is
difficult to obtain a 3D reconstruction that satisfies all constraints exactly. This may be
achieved by constrained optimization, but there might be no batch method of doing so.
Thus, in the following we describe a direct least squares solution for reconstructing a sub-
set of object planes and points, minimizing the sum of squared distances between planes
and points. Usually, the subsets of planes and points that may be reconstructed this way
cover already a large part of the object (cf. the example in §6).

Consider sets of images of coplanar points, S, = {q;, ... ,q;,,, }. A point may
belong to more than one set S,.. Let II,. be the plane corresponding to the set .S,.. In the
following, we only consider planes with known vanishing lines.

We say that two planes II,., and II,., are connected if they share a point, i.e. if the
intersection of S,, and S, is non empty. This relationship may be visualized by a graph,
whose vertices are planes, with edges being drawn between connected planes. We choose
a largest subgraph of connected planes (full connection is not required). Let S!. be the
point sets of the selected planes, points lying on one plane only having been eliminated.

We now show how the considered planes and points may be reconstructed simulta-
neously in a least squares manner. Reconstruction is done via the determination of the
scalars A and d, as given in equations (3) and (4). Let Q be a point lying on plane II. The
squared distance between them is given by:

(d+ (@ q)A)

We want to minimize the sum of squared distances for pairs of planes and points. The
cost function is thus:

9= Z i <d3 +2 ((n’")Tq;,.p) Ny dr + ((n’")Tq;,.p)Q Ai,p)

r p=1

Its partial derivatives are (divided by 2):

zy Ny
() (.

Lo Y (wlg)d | X (@),

riap €, rip €5}
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Nullifying these leads to a homogeneous linear equation system in the unknowns d,. and
Ap, giving the least squares solution. The solution is defined up to scale, as expected,
since reconstruction can only be done up to scale.

The equation system has the following nice structure:

D, Cii Ci2 --- Chin dy 0

Dy Cor Coy -+ (Coy d> 0
Ci Cu - Cpu| In A1 10
Ciz Co -+ Cpo L, Ay 0

where:

D, = Z 1 Crp = (nr)Tq;) Lp = Z ((nr)Tq;))z
p=1

r,dpE€S]

Special sparse solution methods may be used like e.g. in [3], but for small problems
(the size of the matrix is the number of planes plus the number of points, which is usually
at most a few dozens for single images) we simply use singular value decomposition.

4.2 Other Modules

Our method requires basically two other reconstruction modules, the backprojection of a
point onto a 3D plane and the fitting of a plane to a set of 3D points, possibly including
ideal points.

Backprojecting a point onto a plane. Backprojection of a point onto a plane is done
by computing A, via:
dy
Ap == —71_, .
(n'r') qp

Fitting a plane to a set of points. Several cases may be considered. In the general case,
the cost function to be minimized is the sum of squared distances (we omit here indices
referring to the plane):

9= (& +2(n"a)) \d+ (n"ay)*X2) )

p=1

Nullifying the partial derivatives leads to a linear homogeneous equation system in the
unknowns d and n. If we already know the plane’s normal n, we obtain the following
closed form solution for the unknown d:

ZZ:1 (an;)

d=-—=r=4
Zp:l]‘
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Complete Algorithm

5
1. Compute vanishing points and lines (cf. §2.2).
2. Calibrate (cf. §3).

3. Backproject all points up to scale, i.e. compute the vectors q;, ~ K=1q, . Scale the

q), to unit norm and use extended coordinates for 3D points: Q] = (), (q;)T, 1) .
. From vanishing lines, compute plane normals (cf. equation (4)).

5. Partition the planes with known normal in sets of planes which are connected by at
least one point (in a transitive manner).

6. Choose the largest partition.

7. Reconstruct plane and point positions (distances from origin) as described in §4.1.
Use only points that lie on more than one plane in the actual partition.

8. Backproject points that lie on exactly one plane in the actual partition (cf. §4.2).

9. Reconstruct a plane not reconstructed yet by fitting it to 3D points (cf. §4.2). Each
point provides one equation and a vanishing line two. Choose the plane with the most
equations.

10. Backproject points lying on the plane just reconstructed.
11. If there are planes not reconstructed yet, go to step 9.

N

We may optimize the reconstruction, respecting the geometric constraints. We have
coded such a bundle adjustment procedure, but in practice there is virtually no improve-
ment in the quality of the reconstruction, so we usually omit this step. From the 3D
reconstruction, we automatically create textured VRML models (see examples in §6).

6 Sample Run and Examples of 3D Models

Figure 1 explains the user-provided input to our algorithm for the example shown in figure
3. On the left hand side, the different directions present in the 3D object are represented
via the dotted line segments which are used for computing the vanishing points. Addi-
tionally, the user should flag perpendicular directions. On the right hand side, 5 groups of
parallel planar patches are shown, i.e. groups of patches sharing the same vanishing line.
The edges in the middle of the graph show which directions “belong” to which groups of
planes. For example, for each of the second, third and fifth groups of planes, we have two
vanishing points, allowing us to compute the vanishing lines.

Some of the steps taken by the reconstruction algorithm for our example are shown
in figure 2. The upper left figure shows the result of the initial step described in §4.1.
Note that a large part of the object is already reconstructed. The upper right figure shows
points that are backprojected onto the reconstructed planes (cf. step 8 of the algorithm).
The subsequent rows of figures show on the left a reconstructed plane (dark) and the
(bold) points used to reconstruct it (step 9 of the algorithm). On the right, backprojected
points are shown using bright circles (step 10). The reconstruction of the whole 3D model
for this example required 2 additional steps of alternating plane-point reconstruction, not
shown here.

Figures 3 and 4 on page 10 show examples of 3D models obtained with our method.
The first image in each figure is the original image from which reconstruction was ob-
tained. The other images show rendered views of created VRML models. Texture maps
were taken from the original images. For the model shown in figure 4, additional texture
maps, taken from frontoparallel views of two of the walls were used to enhance resolution.
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Figure 2: First 6 steps of the reconstruction process.
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7 Conclusion

We have presented a method for interactive 3D reconstruction of piecewise planar objects
from a single view. Camera calibration and 3D reconstruction are done using geometrical
constraints provided by the user, that are simple in nature (coplanarity, perpendicularity
and parallelism) and may be easily provided without any computer vision expertise.

The major drawback of single-view 3D reconstruction is of course that only limited
classes of objects may be reconstructed and that the reconstruction is usually incomplete.
The major advantages however are that it is a quick way of obtaining 3D models, that
it is rather easy to implement and to use and that due to user interaction and the small
size of the problem the reconstruction process becomes very reliable, compared to more
automatic multi-view systems.

One advantage of our method compared to other approaches is that a wider class of
objects can be reconstructed (especially, there is no requirement of disposing of two or
more vanishing points for each plane). The simultaneous reconstruction of several planes
and several points that forms the starting point of our method makes it likely that errors
are nicely spread over the whole 3D model, compared to more sequential approaches like
[5].

There are several extensions that may be added to our basic method. For example,
other primitives than points and planes might be used, like lines, spheres or cylinders.
Other types of geometrical constraints, like e.g. ratios of distances, can be added, en-
largening the class of objects that can be reconstructed. Also, it might be worth trying
to stitch together two or more 3D models obtained from single, possibly non-overlapping
views (e.g. from the back and the front of a house), to get complete 3D models.

We already adapted our method to the use of panoramic images, obtained using a
parabolic mirror. Thus, we are able to create 360° 3D models from one image, usually of
the interior of a room.

Please contact the first author to get hard copies with color figures and images.
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Figure 4: Original image and rendered views of 3D VRML model.
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