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Abstract

Multiple vanishing point detection provides the key to recovering the

perspective pose of textured planes. If vanishing points are to be de-

tected from spectral information then there are two computational

problems that need to be solved. Firstly, the search of the extended

image plane is unbounded, and hence the location of vanishing points

at or near in�nity is di�cult. Secondly, correspondences between lo-

cal spectra need to be established so that vanishing points can be

triangulated. In this paper we o�er a way of overcoming these two

di�culties. We overcome the problem of unbounded search by map-

ping the information provided by local spectral moments onto a unit-

sphere. According to our representation, the position and direction

of each local spectrum maps onto a great circle on the unit-sphere.

The need for correspondences is overcome by accumulating the great

circle intercepts. Vanishing points occur at local accumulator maxima

on the unit-sphere. We experiment with the new shape-from-texture

technique on planar textures in buildings.

1 Introduction

The perspective foreshortening of surface patterns is an important cue for the re-

covery of surface orientation from 2D images [2, 7]. Broadly speaking there are

two routes to recovering the parameters of perspective projection for texture pat-

terns. The �rst of these is to estimate the texture gradient [3, 11]. Geometrically,

the texture gradient determines the tilt direction of the plane in the line-of-sight

of the observer and its magnitude determines the slant angle of the plane. A

more direct and geometrically intuitive alternative route to the local slant and

tilt parameters of the surface is to estimate the whereabouts of vanishing points

[8, 9, 16]. Provided that two or more vanishing points are available, then planar

surface orientation can be directly determined.

Unfortunately the location of vanishing point from texture distribution is not

itself a straightforward task. If direct analysis is being attempted in the spatial

domain, then the tractability of the problem hinges on the regularity and structure

of the texture primitives [8, 9]. Moreover, multiple vanishing point detection may

�Supported by CAPES-BRAZIL, under grant: BEX1549/95-2

BMVC99

255

BMVC 1999 doi:10.5244/C.13.26



British Machine Vision Conference

be even more elusive. It is for this reason that frequency domain analysis o�ers

an attractive alternative [5, 1, 6]. The main reason for this is that the analysis

of spectral moments can provide a convenient means of identifying the individual

radial patterns associated with multiple vanishing points.

In this paper we make use of an interesting spectral property which provides

a direct route to vanishing point location via the use of frequency domain infor-

mation. The observation is a simple one. A t each point on the image plane, the

spectral angle points in the direction of a vanishing point. Lines that radiate from

a vanishing point therefore connect points of uniform spectral angle.

Although this spectral property can be used to directly locate vanishing point

positions on the image plane, and hence estimate perspective pose, there are a num-

ber of implementational di�culties. Firstly, the vanishing point ma y fall anywhere

on the extended image plane. In other w ords,the search space is not bounded.

Secondly, in order to triangulate the vanishing points, several lines must be �tted

through points which have identical spectral orientation. As a result, spectral cor-

respondences must be established in order to �t the lines. The aim in this paper

is to provide a representation which provides a single, and quite elegant, solution

to these t w o problems.

The idea underpinning our method is to exploit the unit-sphere representation

of the image plane [16]. This involves placing a sphere of unit radius at the focal

point of the camera. Lines on the image planes map to great circles on the unit

sphere. This representation bounds the searc h space for vanishing points, since

parallel lines meet at opposite poles of the unit sphere. This solves our �rst problem

of bounded search. Our solution to the problem of �nding correspondences is to

treat the unit-sphere as an accumulator space. The position of a point on the

image plane together with the direction of its spectral moment de�ne a line. Each

such line transforms to a great circle on the unit sphere. When several local spectra

radiate from the same vanishing point on the image plane, then their great circles

will intersect at a common location on the unit sphere. By accumulating votes

along great circles on a suitably quantised representation of the unit-sphere we can

search for vanishing points. These correspond to local maxima of accumulation.

2 Perspective Modelling

We commence by reviewing the projective geometry for the perspective transfor-

mation of points on a plane [5, 1]. Speci�cally, we are interested in the perspective

transformation betw een the object-centred co-ordinates of the points on the tex-

ture plane and the viewer-cen tred co-ordinates of the corresponding points on the

image plane. Suppose that the texture plane is a distance h from the camera which

has focal length f < 0. Consider tw o corresponding points that have co-ordinates

Xt = (xt; yt)
T on the texture plane and Xi = (xi; yi)

T on the image plane. The

perspective transformation betw een the two co-ordinate systems is

Xi = TpXt (1)

We represent the orientation of the viewed surface plane using the slant � and tilt

� angles. This parametrisation is a natural way to model local surface orientation.
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For a giv en plane, the slan t is the angle betw eenviewer line of sight and the

normal vector of the plane. The tilt is the angle of rotation of the normal vector

around the line of sight axis. The elements of the transformation matrix Tp can

be computed using the slant angle � and tilt angle � in the following manner

Tp =
f cos�

h� xt sin�

�
cos � � sin �

sin � cos �

��
1 0

0 1

cos�

�
(2)

The perspective transformation in Equation 2 represents a non-linear geometric

distortion of a surface texture pattern onto an image plane pattern. Unfortu-

nately , the non-linear nature of the transformation makes Fourier domain analysis

of the texture frequency distribution somewhat intractable. In order to proceed

w e therefore derive a local linear approximation to the perspective transformation.

The �rst-order Taylor approximation to the transformation is:

T �p =



hf cos�

2
4xoi sin� + f cos � cos� �f sin �

yoi sin� + f sin � cos� f cos �

3
5 (3)

where 
 = f cos� + sin� (xoi cos � + yoi sin �). Hence, T
�

p depends on the expan-

sion point (xoi; yoi) which is a constant. The transformation T �p in Equation 3

operates from the texture plane to the image plane. The model is similar to the

scaled orthographic projection [4].

The net e�ect of the global perspective transformation is to distort the viewer-

cen tred texturepattern in the direction of vanishing points on the image plane.

Given tw o pointsV1 = (xv1; yv1)
T andV2 = (xv2; yv2)

T w e can directly determine

the 3-D orientation of the plane. Let the normal-vector to the texture plane be

N = (p; q; 1). The resulting normal vector components p and q are found by

solving the equations [13]:

p = f
yv1 � yv2

xv1yv2 � xv2yv1
q = f

xv2 � xv1

xv1yv2 � xv2yv1
(4)

Using the tw o slope parameters, the slan t and tilt angles are computed using

� = arccos

�
1p

p2+q2+1

�
and � = arctan

�
q

p

�
. If more than two vanishing points

are available, then the recovery of perspective pose parameters is over-constrained

and can be e�ected by least-squares estimation.

3 Projective Distortion of the Po wer Spectrum

The Fourier transform provides a representation of the spatial frequency distribu-

tion of a signal. The novel contribution in this section we show how local spectral

distortion resulting from our linear approximation of the perspective projection

of a texture patch can be computed using an a�ne transformation of the Fourier

representation. We will commence by using an a�ne transform property of the

F ourier domain [14]. This property relates the linear e�ect of an a�ne transfor-

mation A in the spatial domain to the frequency domain distribution. Suppose

that F (:) represents the F ourier transform of the image.F urthermore, letX be a
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vector of spatial co-ordinates and letU be the corresponding vector of frequencies.

According to Bracewell et al [14], the distribution of image-plane frequencies Ut

resulting from the Fourier transform of the a�ne transformation Xi = AXt + B

is given by

F (Ui) =
1

jdet(A)j
e2�jUt

T
A
�1

BF [A�TUt] (5)

In our case, the a�ne transformation is T �p as given in Equation 3 and there are

no translation coe�cients, i.e., B = 0. As a result Equation 5 simpli�es to:

F (Ui) =
1

jdet(T �p )j
F [T �p

�T
Ut] (6)

In other words, the e�ect of the a�ne transformation of co-ordinates T �p induces

an a�ne transformation T �p
�T on the texture-plane frequency distribution. The

spatial domain transformation matrix and the frequency domain transformation

matrix are simply the inverse transpose on one-another.

We will consider here only the a�ne distortion over the frequency peaks, i.e.,

the energy amplitude will not be considered in the analysis. F or practical purposes

w e will use the local pow er spectrum as the spectral representation of the image.

This describes the energy distribution of the image as a function of its frequency

content. In this way we will ignore complications introduced by phase information.

Using the pow er spectrum, small changes in phase due to translation will not a�ect

the spectral information and hence Equation 6 will hold. The power spectrum

representation of an image f(Xt) may be de�ned as the Fourier transform of the

autocorrelation function of the image.

In order to obtain a smooth spectral response we use the Blackman-Tukey(BT)

pow er spectrum estimator.This is the frequency response of the window ed auto-

correlation function. We employ a triangular smoothing window w (X) [15 ] due

to its stable spectral response. The spectral estimator is then

P (Ui)
BT = Ffcxx (Xi)� w (Xi)g (7)

Where cxx is the estimated autocorrelation function of the image patch. Our

overall goal is to consider the e�ect of perspective transformation on the power-

spectrum. In practice, how ever, we will be concerned with semi-periodic textures

in which the power spectrum is strongly peaked. In this case w e can con�ne

our attention to the way in which the dominant frequency components transform.

According to our a�ne approximation and Equation 6, the way the Fourier domain

transforms locally is governed by

Ui = T �p
�T
Ut (8)

This spectral property has also been exploited by Rosenholtz and Malik [6] in their

w ork on local shape-from-texture.

4 Lines of Constant Spectral Orientation

We will now consider theangular distortion of the local spectral distribution re-

sulting from perspective projection. On the texture-plane the frequency-domain
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angle of the unprojected spectral component is given b y� = arctan
�
vt
ut

�
. Using

the a�ne transformation of frequencies given in Equation 8 and the inverse trans-

pose of the perspective transformation in Equation 3, the corresponding frequency

domain angle in the image plane is

� = arctan

�
vi

ui

�
= arctan

�
utf sin � + vt (xoi sin� + f cos � cos�)

utf cos � � vt (yoi sin� + f sin � cos�)

�
(9)

F or simplicity, we con�ne our attention to a rotated system of image-plane coor-

dinates in which the xi-axis is aligned in the tilt direction. In this rotated system

of coordinates, the above expression for the image-plane spectral angle simpli�es

to

� = � arctan

�
(f cos� + xoi sin�)vt

yoivt sin� � fut

�
(10)

Let us now assume that the line L� radiates from a vanishing point which results

from the projection to a family of horizontal parallel lines on the texture plane.

Before projection, this family of parallel lines is described by the spectral com-

ponent Us = (0; vt)
T . After perspective projection, this family of lines can be

written in the \normal-distance" representation as

L� : r� = xoi cos � + yoi sin � 8 (xoi; yoi) 2 L� (11)

where r� is the length of the normal from the line to the origin, and, � is the

angle subtended between the line-normal and the xi-axis. Figure 1 illustrates

the geometry of this line representation together with the angle � of the spectral

component at the point of expansion (xoi; yoi). Here we are particularly interested

in the angle of the local spectral components along one of the lines radiating from

a vanishing point. If (xoi; yoi) belongs to suc h a line L�, then w ecan rewrite

Equation 10 as:

� = � arctan

�
(f cos� + xoi sin�)vt

(r� � xoi cos �) vt sin� � fut

�
(12)

Since L� passes through the horizontal v anishing pointV = (xv ; yv) = (� f cos�

sin�
; 0)T

on the image plane, for f < 0, the normal distance of the line r� is given by

r� = xv cos � + yv sin � =
�f cos�
sin�

cos � (13)

Therefore, by substituting the above value of r� into Equation 12 and restricting

our atten tionto horizontal textures for which us = 0, after some simpli�cation

w e�nd that � = �, 8 (xoi; yoi) 2 L�. As a result, each line belonging to the

family L� connects points on the image plane whose the local spectral distributions

ha vea uniform spectral angle �. F urthermore, the image plane position and

the associated spectral angle estimate are su�cient to specify the equation of a

putative line radiating from the vanishing point. Several suc h lines will intercept

at a unique vanishing point on the image plane. This is a novel observation which

is pivotal to the development of our new method for recovering perspective pose.

Finally, it is important to stress that our method is only limited by the need for

spectra with distinct and sharply focussed components. As we will demonstrate

later, this lends it to a diversity of real world textures.
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5 Local Spectral Frequency Under Unit Sphere

Mapping

In this section w e follo w Barnard [16] and model the image plane in terms of

spherical coordinates by projecting it onto a unit sphere centred at the optical

cen tre. This projection simpli�es the representation of the perspectivity of the

texture plane and the searc h for its vanishing points. The main advantage is

that unlike the image plane, the unit sphere is a closed space parametrised the

tw o angles of azimuth and zenith or elevation. Spherical projections of the image

plane have been exploited by several authors [10, 16]. How ever, they have employed

structural representations of texture. Instead, we use the local spectral frequency

to model texture.

Figure 1 illustrates the projection geometry. The unit sphere is placed at the

focal point and the image plane lies at a distance f along the optical axis. For each

point on the image plane, the position (xi; yi) and the measured spectral angle �i
specify the equation of a line. The orientation � = �i and the normal distance is

given b yr� =
p
x2i + y2i cos (�i � �i) (where �i = arctan yi

xi
). Each such line, L�
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Figure 1: Projecting lines from the image plane onto the unit-sphere.

projects onto a great circle on the unit sphere. The great circles are constructed by

intersecting the sphere by the plane that both contains the line L� and the center

of the sphere. Let G� be a vector that points from the centre of the unit sphere to

a point on the corresponding great circle. If the point has azimuth ' and elevation

 , then the vector is given b yG� = (sin' cos ; sin ; cos' cos ). Suppose that

I� is the normal vector of the plane which contains the great circle. Figure 1

shows in the geometry of the plane normal vector I� and the great circle generator

vector G�. Since the tw ovectors are perpendicular to one-another they satisfy

the condition that G�:I� = 0. The azimuth and elevation angles of points on the

great-circle are related to the normal distance parameters of the straight-line in

the following manner

f (sin �: tan + cos � sin') = r� cos' (14)

BMVC99

260



British Machine Vision Conference

6 Accumulation on the Unit-Sphere

Having established the relationship betw een spectral angle and vanishing point lo-

cation, we are now in a position to develop an accumulation algorithm on the unit

sphere. We exploit the following tw o properties to map thesearc h for v anishing

points on to the unit-sphere:

Property 1 (Spectral Frequency Angle Constancy). If L� is a line

radiating from a vanishing point on the image plane, then every local spectral

distribution tak en at points belonging to L� will have a constant spectral angle

�. Conversely, each spectral angle � estimated from a local frequency distribution

on the image plane speci�es the equation of a line L� which radiates from a cor-

responding vanishing point.

We now exploit Property 1 to directly relate the local spectral angle to great

circles on the unit sphere. Using the equality betw eenthe angles � and � and

using the expression for a great circle in Equation 14, we �nd

 = � arctan
f cos� sin'� r� cos'

f sin�
(15)

Property 2 (From Spectral Frequency Angles to Great Circles).

Each spectral angle � estimated from the local frequency distribution centred at

a point on the image plane maps to a great circle on the unit sphere. When sev-

eral great circles intercept on the unit sphere, then the corresponding image-plane

spectra will have originated from a common vanishing point.

T o compute the spectral angle distribution, we require a way of sampling the

local pow er spectrum.In particular we need a sampling procedure which provides

a means of recovering the angular orientation information residing in the peaks of

the pow er-spectrum.We accomplish this by simply searching for local maxima over

a �ltered representation of the local pow er spectrum. Since we are interested in

the angular information rather than the frequency conten ts of the pow er spectrum,

w e ignore the very lo w frequency components of the pow er-spectrum since these

mainly describe micro-texture patterns or very slow energy variations. Providing

that we have at least t w o representative spectral peaks we can directly generate

line directions according to the angular constancy property. We can use as many

distinct spectral components as w e can estimate. How ever, a tw o component

decomposition is su�cient for our purposes. We extract angular decompositions for

the local pow er spectra at several locations on the image plane. Using Equation 15

w eaccumulate evidence for the intersections of great circles on the unit sphere.

T odo this w equantise the unit sphere into accumulator cells of approximately

equal area. Each great circle is traced across the unit sphere and the vote count

is incremented each time it crosses a new accumulator cell. V anishing points are

located in cells which have accumulated local voting maxima. Once two or more

intersection points are located, then the perspective pose of the plane can then be

determined as described in Section 2.
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7 Experiments

In this section we provide some results which illustrate the accuracy of planar pose

estimation achiev ablewith our shape-from-texture algorithm. This evaluation

is divided into tw oparts. We commence by considering textures with known

ground-truth slant and tilt. This part of the study is based on projected Brodatz

textures [12]. The second part of our experimental study focuses on real texture

planes where the ground truth is unknown.

7.1 Synthetic texture planes

In Figure 2, we have taken three di�erent texture images from the Brodatz album

and ha veprojected them onto planes of kno wn slant and tilt. The textures are

regular real textures of almost uniform element distribution. Superimposed on

the projected textures are the estimated lines radiating from the corresponding

vanishing points as given b y our algorithm.Figure 3 shows the back-projection of

the images onto the recovered texture plane. In most cases there is little residual

perspective distortion. The values for the estimated orientation angles are listed

and compared with ground-truth in the Table 1. The main feature to note is that

the method performs well even when the texture plane is highly inclined.

(a) (b) (c) (d) (e) (f)

Figure 2: Brodatz textures. (a)-(b) D101; (b)-(c) D1; (d)-(e) D20.

(a) (b) (c) (d) (e) (f)

Figure 3: Back-projected Brodatz textures. (a)-(b) D101; (b)-(c) D1; (d)-(e) D20.

BMVC99

262



British Machine Vision Conference

TABLE 1 - Actual� Estimated slant and tilt v alues (Brodatz Textures)

actual estimated abs. error

(�) (� ) (�') (� ') �' � '

(a) 30 0 31.0 0.0 1.0 0.0

(b) 50 225 51.2 224.1 1.2 0.9

(c) 30 0 28.1 0.0 1.9 0.0

(d) 45 45 42.7 45.3 2.3 0.3

(e) 30 -30 29.6 -32.0 0.4 2.0

(f) 60 120 58.8 117.8 1.2 2.2

7.2 Real World Examples

This part of the experimental work focuses on real world textures with unknown

ground-truth. The textures used in this study are tw oviews of a bric k-wall, a

Y ork pantile roof and the lattice casing enclosing a PC monitor. The images were

collected using a Kodak DC210 digital camera and are shown in Figure 4. There

is some geometric distortion of the images due to camera optics. This can be

seen by placing a ruler or straight-edge on the brick-wall images and observing the

deviations along the lines of mortar betw een the bricks.

(a) Brick Wall (b) Brick Wall (c) Roof (d) PC casing (e) PC casing

Figure 4: Outdoor texture images.

(a) Brick wall (b) Brick wall (c) Roof (d) PC casing (e) PC casing

Figure 5: Back-projected Outdoor images.

Superimposed on the images are the lines radiating from the vanishing points.

In the case of the brick-wall images these closely follow the mortar lines. In Figure 5

w eshow the back-projection of the textures onto the fronto-parallel plane using

the estimated orientation angles. In the case of the brick-wall, any residual skew

is due to error in the estimation of the slant and tilt parameters. It is clear that

the slant and estimates are accurate but that there is some residual skew due to

poor tilt estimation.
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8 Conclusions

We ha ve describedan algorithm for estimating the perspective pose of textured

planes by projecting spectral information onto a unit-sphere. We exploit the fact

that the local spectral components are oriented in the direction of vanishing points.

As a result each estimated spectral component can bemapped onto a great cir-

cle of the unit-sphere. V anishingpoints are characterised by locations at which

several great circles intercept. Based on this observation, we pose the problem of

estimating perspective pose as that of searching for accumulator cells of maximum

contents on the unit-sphere. The method is illustrated to operate e�ectively on

both syn thetic imagery withknown ground truth and ona wide variety of real-

w orld textured planes. One advantage of the method is that it does not rely on

potentially unreliable estimates of texture gradient to constrain the tilt angle.
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