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Abstract

Recently 3 algorithms for registration of multiple partially overlapping point
sets have been published by Pennec [11], Stoddart & Hilton [12] and Ben-
jemma & Schmitt [1]. The problem is of particular interest in the building of
surface models from multiple range images taken from several viewpoints.
In this paper we perform a comparison of these three algorithms with respect
to cpu time, ease of implementation, accuracy and stability.

1 Introduction

Several authors have considered the problem of building complete surface models of com-
plex objects using range images taken from several views [2, 4, 5, 6]. Since the viewpoints
(or object poses) are usually not known it is necessary to register the surfaces taken from
various views prior to fusion [8].

In the case of 2 views the iterated closest point algorithm (ICP) [3] may be used
to register surfaces. This algorithm requires a solution to the 3D point set registration
problem under rotation and translation. Several analytic solutions are available, see [10]
and references contained therein.

When more than 2 views must be registered the ICP algorithm may still be used,
provided that a solution for the N-view point set registration problem is available. The
N-view point set registration problem may be reduced to a chain of pairwise problems and
solved with the 2 view algorithm, however this is not an optimal solution. Information
present in the unused overlapping view pairs should also be used for an optimal solution.

Recently 3 algorithms for registration of multiple partially overlapping point sets have
been published [11, 12, 1]. The relative merits have not yet been studied. In the 2 view
case a thorough evaluation of the various techniques has been performed by Eggert et al
[7]. The purpose of this paper is similar to the Eggert work and we present a comparison
of 3 N-View registration methods.

2 N-View Registration

Several analytical solutions exist for the 2 view point set registration problem. These
methods decouple the rotation and translation, and solve for the rotation by computing the
SVD of a (3� 3) matrix [10] or the eigenvectors of a (4� 4) matrix [9]. The translation
is then usually solved by calculating the distance between rotated centroids.
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We will study the methods of Stoddart and Hilton (SH) [12], Pennec [11] and Benje-
maa and Schmitt (BS) [1]. All the current methods for N-view registration are iterative.
However, Benjemaa and Schmitt made a significant advance insofar as they have been
able to analytically decouple the rotation and translation.

2.1 Problem definition

Each of the three papers is presented in a distinct notational framework. We attempt to
bring about some degree of consistency in our description. We begin by defining the
problem following the notation of Benjemaa and Schmitt.

Benjemaa and Schmitt assume that there are M point sets each taken from a different
viewpoint, S1 : : : SM , where S� = fp�

1
: : : p�Ng. The objective is to find the best rigid

body transforms, f1 : : : fM , to apply to each point set. A rigid body transform is denoted
as f� = fR�; T�g, whereR� denotes the rotation and T� denotes the translation. Hence,
f� � p = R�p+ T�.

The overlap of S� with S� is denoted as O�� � S� where O�� = fp��
1

: : : p
��

N��
g.

O�� has N�� points where each point p��i is matched with p��i 2 O�� � S�. Therefore
N�� = N��. Schmitt also states that O�� = ; and N�� = 0 for convenience in
subsequent formulae.

The problem may be specified as minimising over the N transforms f� the cost E
where

E[f1 : : : fM ] =

MX

�=1

MX

�=1

N��X

i=1

w
��
i k f� � p��i � f� � p��i k2 (1)

where the weightsw��
i are given. We note that the problem is undetermined up to a global

transformation applied to all point sets. This can be removed by requiring that f1 is the
identity transform.

2.2 Pennec

Pennec’s [11] method is by far the easiest to implement (provided that one of the 2 view
algorithms is already available!) It is iterative and based on the concept of ‘mean shape’.
In [11] Pennec introduced a formal framework in which he was able to define the aver-
aging of shape. Each view has corresponding points on the mean shape to which it is
registered using a standard point set registration method, such as Horn et al. [9]. At the
beginning of the next iteration, the new mean shape is calculated, and again the views are
registered to it. This continues until convergence.

Pennec considers an object represented by a k-tuple X = fx1 : : : xkg. A rigid trans-
form f applied on X is simply f �X = ff � x1 : : : f � xkg. In the real world, however,
there are often missing data and thus incomplete k-tuples.

If we have several noisy k-tuples of points we may wish to compute the mean shape
M = fm1 : : : mkg. Pennec provides a lengthy discussion of formal issues related to mean
shape, but for our purposes it is sufficient to adopt the obvious definition of the mean
shape. Suppose we have N k-tuples X1::XN with Xj = fxj

1
: : : x

j

kg then the mean
shape may be defined as

mr =

PN

j=1 w
j
rx

j
rPN

j=1 w
j
r

(2)
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The weight wj
r may be set to zero in the case of missing data.

At first glance this may appear to be a different problem to our own but our problem
may be converted into a mean shape problem. This is done by reordering the points
and associating each measurement with some point r in a k-tuple by use of a mapping
r(i; �; �). Hence the mean shape is defined as

mr0 =

kX

r=1

�r0r

PM

�=1

PM

�=1

PN��

i=1 w��
i p��i r(i; �; �)

PM

�=1

PM

�=1

PN��

i=1 w
��
i r(i; �; �)

(3)

Once we have a mean shape defined we can register one view at a time to this mean shape
by minimising the residuals over f�

E[f�] =

kX

r=1

MX

�=1

N��X

i=1

w
��
i r(i; �; �) k mr � f� � p��i k2 (4)

f� is solved by using a closed-form solution such as Horn et al. [9]. The solution to
the N-view registration problem is obtained by iterating over the two steps of computing
mean shape and registering all views to the mean shape.

To summarise, the mean surface is first computed. Next, the optimal transforms for
each view are then solved. The mean surface is then recomputed taking into account the
new transforms. The transforms are again solved for, and this process continues until
convergence.

2.3 Stoddart and Hilton

Stoddart and Hilton [12] use an iterative numerical method based on gradient descent.
The problem is solved by analogy with a physical system of rigid bodies connected by
springs. The friction dominated equations of motion dictate a solution that evolves over
time to a local minimum in potential energy. By integrating the equations of motion over
time we solve the registration problem.

To start off the process, guesses must be supplied. During the computation, all trans-
forms associated with each view vary simultaneously. Once the computation is complete,
all views are transformed so that the first view is transformed by the identity transform.

Each view is associated with a rigid body having an arbitrary center of mass and mo-
ment of inertia. These parameters do have considerable effect on the rate of convergence.
A sensible choice for the parameters is as follows. The center of mass should be set to the
centroid of a point set and the moment of inertia is chosen as if each object were a sphere
of radius equal to half the diagonal of a bounding box containing the data.

SH consider each pair of corresponding points to be connected by a spring of strength
w
��
i making it is possible to compute forces applied by these springs. The individual

spring forces may be combined into an overall force F�
tot acting on the center of mass and

a torque ��tot around the center of mass of a rigid body for each view. In [12] it is shown
how to compute these in a very efficient way.

The force and torque are inserted into a dynamical system which moves towards a
potential minimum. The following friction dominated equations of motion are chosen.



dy�cm
dt

= F�
tot (5) �!� = ��tot (6)


 resembles the mass and � the moment of inertia, but here they represent the drag and
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rotational drag coefficients. ! is the angular velocity (rate of change of orientation with
respect to time).

The system of equations are then integrated by a simple quality controlled Euler
method which can solve the dynamical system with adaptive step size. It is guaranteed to
converge to a local minimum.

2.4 Benjemaa and Schmitt

Benjemaa and Schmitt [1] use a quaternion approach similar to that of Horn et al. [9].
The general approach is as follows. Firstly the translations are all eliminated analyti-

cally. One view, or point set, is used as a reference frame by having an identity translation
and rotation associated with it which remain constant. During each iteration the rotation
for all of the other point sets are solved. Only one point set at a time is allowed to be
moved so that the rotation can be solved for it, while the others are kept fixed. Once that
rotation is solved, the rotation for the next point set is determined. This continues until all
of the optimal rotations have been obtained. This process is continued until convergence.

2.4.1 Optimal Translation

Benjemaa and Schmitt shows that the optimisation of rotations can be decoupled from
the values of the translations. The optimal translations are then obtained by using a linear
combination of differences between rotated centroids.

By ignoring the weight component of equation (1) and expressing f� in its two com-
ponents of rotation R� and translation T�, it can be written as follows.

E =

MX

�=1

MX

�=1

N��X

i=1

k R�p
��
i �R�p

��
i + T� � T � k2

Schmitt rewrites the cost function as E = ER +Et;R, where

ER =

MX

�=1

MX

�=1

N��X

i=1

k R�p
��
i �R�p

��
i k2

and goes on to show that Et;R can be written in a matrix form. Minimising Et;R becomes
then equivalent to the minimisation of Q(X), where X contains the unknown translations
for the views and A & B are matrices computed from the data points [1].

Q(X) = XTAX + 2XTB (7)

By setting R1 = I and T 1 = 0, the first point set is fixed and equation (7) becomes,

Q( �X) = �XT �A �X + 2 �XT �B (8)

where �X and �B are the vectorsX andB deprived of their first element, and �A isAwithout
the first row and column. Schmitt notes that Q( �X) is a quadratic form which is minimal
when �A �X = � �B. Hence the translations can be simply obtained by the inversion of the
matrix �A.

�Xmin = � �A�1 �B (9)
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2.4.2 Optimal Rotation

Schmitt uses the result obtained in equation (9) and substitutes �Xmin for �X in equation
(8) to obtain equation (10).

Q( �Xmin) = � �BT �A�1 �B (10)

Et;R = 2Q( �Xmin) and is now expressed in terms of rotations. Schmitt goes on to show
that minimising E is equivalent to maximising H .

H =

MX

�=1

MX

�=1

N��X

i=1

R�p
��
i � R�p

��
i + �BT �A�1 �B (11)

Schmitt uses properties of quaternions to re-express the first term of H as

H1 =

MX

�=1

MX

�=1

( _q�� _q�)TQ��R ( _q�� _q�) (12)

where _q is a unit quaternion and _q� the conjugate of _q.
Schmitt shows that the 2nd term of H , �BT �A�1 �B can be expressed as

�BT �A�1 �B =

MX

�=1

MX

�=1

( _q�� _q�)TQ��t ( _q�� _q�) (13)

The reader is advised to consult [1] for more details. Finally the problem for each
view reduces to a problem of the form

H( _qj) = 2 _qj
T

Nj _qj ; (14)

where Nj =
PM

�=1;� 6=j Q
��TQj�Q�� , and where Q is the quaternion matrix form.

H( _qj) is a quadratic form, and so the optimal unit quaternion which maximises this
function is the eigenvector corresponding to the highest eigenvalue of the matrix Nj .

3 Results

To characterise the three methods a series of numerical experiments were performed to
determine the rate of convergence, accuracy, stability, and computational time required
by the methods.

The reader may also wish to consider implementation issues alongside other criteria.
In our subjective opinion having implemented all three algorithms the Pennec algorithm
is by far the easiest to implement. The other two algorithms are both complex algorithms
needing significant effort to implement.

In addition the SH algorithm has several free parameters which are chosen heuristi-
cally. The present implementation is based on a quality controlled Euler routine which
requires some parameters to be set. In contrast the Pennec algorithm requires no parame-
ters to be chosen other than the termination criterion and threshold. The same applies to
Benjemaa and Schmitt.
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3.1 Creation of Synthetic Data Sets

Synthetic data sets were generated from 3D surface models by a process intended to
emulate a multiple view range data acquisition.

We begin by selecting a 3D model. We choose some number of points at random on
the surface. For each of the � = 1::M views a view direction was chosen and the subset
of the total set was chosen that was visible from the specified view direction. This results
in the point sets S�.

It is in principle possible for every point set to overlap with every other point set.
We specified overlaps to take place only when a point was simultaneously visible from 2
views. Thus we obtain the overlap sets (also called correspondence sets) O�� = O��.
The number of correspondence sets generated will depend on the number of views speci-
fied and the characteristics of the 3D model used.

When adding a point to a correspondence set, each view will have an identical copy
of that point. Hence the views within each correspondence set are perfectly registered.
After adding noise it will no longer be true that O�� = O��.

The next step in creation of simulated data is the creation of a number of views. The
views were chosen to get the maximum coverage of the 3D model. For each experiment
the same views were used. The number of views chosen were 2, 3, 6 and 18 which allows
a sequence of tests of increasing difficulty.

The views (0; 0; 1) and (0; 1; 0) were used in the two view case. The three view
case used the additional view (0; 0;�1), and for the six view case, the additional views
(�1; 0; 0), (0; 1; 0) and (0;�1; 0) were used. The eighteen view case was generated by
rotating the six views around the x,y & z axes individually by 45�.

In order to test the algorithms we need to start from some erroneous position. We
choose these positions as follows. The transform for the first view (view 0) is always null,
and thus can be used as a reference frame. For each view the rotation and translation is
incremented. The rotation for the second view (view 1) is 1� and for each subsequent view
the angle is increased by 1�. The rotation axis is always (1; 1; 1). The translation for view
1 is (0:2; 0:2; 0:2), and for subsequent views the x, y and z components are incremented
by 0:2. Hence each view has a unique rotation and translation associated with it.

Finally we add zero mean Gaussian noise with rms � to each coordinate of the syn-
thetic measurements. [ This corresponds to isotropic noise with rms

p
3� when consider-

ing the rms error on vectors.]
The noise is set in terms of a percentage p of the diagonal of the bounding box of the

noise free data, B as follows
� = pB=100 (15)

3.2 Quantitative Measures Used

There are two quantitative measures that we can use to evaluate the result of registration.
We can consider the errors between the ground truth and the estimated rotations and trans-
lations for each view. For convenience we report the error for the last view denoted ��

and �T , the former in units of degrees.
The second measure is the residuals between corresponding points after registration.
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This should be a weighted average over all the point pairs and is given by

e =

PM

�

PM

�

PN��

i w
��
i k f� � p��i � f� � p��i k2

PM

�

PM

�

PN��

i w��
i

(16)

Care should be taken to compute e from the above expression as we have found that some
mathematically equivalent expressions are inaccurate for small e due to roundoff errors.

Since we have added a known amount of noise � to each component of the point pair
we expect that

e =
p
3
p
2� (17)

The
p
3 takes account of the 3 components (x, y, z), and the

p
2 accounts for the fact that

noise has been added to both points.

3.3 Convergence

We begin by considering data sets with no noise added. This is an artificial problem as it
is possible to solve the problem by registering views in a pairwise manner. However this
case is very useful for determining the rate of convergence of the algorithm.

The dataset is derived from a surface model of an icosahedron with unit radius. Firstly
we examine the 2 view case with 50 random points per view. Figure 1 shows the conver-
gence of e as a function of iteration number. We see that BS converges in 1 step, Pennec
converges in 1 step and SH converges in 45 steps. The one step convergence of BS is
expected since in the 2 view case it is equivalent to existing analytic methods. As a purely
numerical method the convergence of SH is as expected. The method of Pennec is some-
what faster than might be expected in this case, but we recall that it too contains a 2 view
analytic method within. For this problem we expect e to converge to zero, we observe that
all methods converge to a number in the region of 10�15, in other words the algorithms
all converge to a number close to full machine precision.

A more meaningful test of the algorithm is a case with more than 2 views. The next
case we consider has 200 points sampled from the icosahedron and 6 views. There were
12 overlap sets. No noise was added. The convergence is illustrated by the graphs in
figure 2. As can be seen all methods show geometric convergence but SH and Pennec
converge faster than Schmitt. The results are summarised in table 1. We see that all
methods converge to full machine precision. The fastest method is SH.

25.0 50.0
10

-20

10
-15

10
-10

10
-5

10
0

Pennec
Schmitt
Stoddart

Figure 1: e, 50 Points, 2 Views, No Noise
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Schmitt
Stoddart

Figure 2: e, 200 Points, 6 Views, No Noise

Table 1: 200 Points, 6 Views, No Noise

method iterations cpu e 10�16 �� 10�14 �T 10�16

Pennec 51 4.99 7.81 2.99 9.93
Schmitt 156 0.80 5.60 2.62 5.44
Stoddart 48 0.24 81.99 32.28 25.51

In the next case we add noise equivalent to 0.5% of the diagonal of the bounding box.
The results are summarised in figure 3 and table 2. The predicted value for e is 0.0353
which is consistent with the result in the table.

5.0 10.0 15.0
0

0

1

10
Pennec
Schmitt
Stoddart

(a) e

15.0 30.0 45.0
0

0

1

10
Pennec
Schmitt
Stoddart

(b) ��

Figure 3: 200 Points, 6 Views, 0.5 Noise

Table 2: 200 Points, 6 Views, 0.5 Noise

method iterations cpu e �� �T

Pennec 10 1.00 0.0356877 0.303154 0.00305913
Schmitt 12 0.06 0.0356877 0.303154 0.00305913
Stoddart 15 0.07 0.0356877 0.303154 0.00305913

An unexpected result is the overshoot of BS in the angle graph which is not visible
in the graph of e. It does seem that Schmitt is more affected by increasing number of
views as can be seen in a figure of �� convergence for the 200 point 18 view case shown
in figure 4.
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Schmitt
Stoddart

Figure 4: ��, 200 Points, 18 Views, 0.5 Noise

3.4 Highly nonspherical models

The results in the previous section are representative of the overall behaviour of the var-
ious methods as applied to a dataset that comes from a regular approximately spherical
shape.

It is our belief that there are several situations where the behaviour of the algorithm
may be much worse. We have tested one such case in which the data comes from a highly
non spherical object.

The object is generated from the previously used icosahedron by scaling two axes by
a factor of 1000. The result is a long thin cigar shaped object. The reader will recall that
when points are collinear in the two view case registration is not possible.

We consider the 6 view case with 200 points and no noise. The results are shown in
figure 5 and table 3. It is clear that the SH method now fails completely and BS produces
a significantly worse answer than Pennec.
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-20
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-15

10
-10

10
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10
0

Pennec
Schmitt
Stoddart

Figure 5: Degenerate - e, 200 Points, 6 Views, No Noise

Table 3: Degenerate - 200 Points, 6 Views, No Noise

method iterations cpu e �� �T

Pennec 50 5.44 1.889e-15 1.186e-10 2.927e-12
Schmitt 129 0.70 1.729e-13 9.183e-09 2.268e-10
Stoddart 22 0.13 1.978e-05 2.848 0.070

As expected the angular error has become much worse (10�10) due to the fact that we
have begun to approach a degenerate case.
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If we add noise of 0.001% of the bounding diagonal we get the results shown in figure
6 and table 4.

15.0 30.0 45.0

0

0

0

0

1
Pennec
Schmitt
Stoddart

Figure 6: Degenerate - e, 200 Points, 6 Views, 0.001 Noise

Table 4: Degenerate - 200 Points, 6 Views, 0.001 Noise

method iterations cpu e �� �T

Pennec 18 1.94 3.847e-05 0.0266727 0.0006627
Schmitt 41 0.21 3.847e-05 0.0266725 0.0006627
Stoddart 24 0.14 4.308e-05 2.84937 0.0703454

In figure 7 we also show the behaviour of �� under noise for 3, 6 and 18 views. Some
unusual convergence behaviour is visible for the BS method but it does make steady
progress to the solution as measured by e.

15.0 30.0 45.0
0
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10
Pennec
Schmitt
Stoddart

(a) 3 View

15.0 30.0 45.0 60.0
0
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1

100

10000
Pennec
Schmitt
Stoddart

(b) 6 View

50.0 100.0 150.0
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1

10

100
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Schmitt
Stoddart

(c) 18 View

Figure 7: Degenerate - ��, 200 Points, 0.001 Noise
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4 Conclusion

It is clear that Pennec’s method is by far the easiest to implement. There are no parameters
to choose. Its rate of convergence is geometrical. It is the only method that consistently
gives high accuracy solutions.

We have also seen that Pennec’s method is by far the slowest and in some applications
we can imagine the additional cpu time would not be a major disadvantage. That it is
the slowest is a inevitable consequence of the fact that the other algorithms use cpu time
proportional to the number of points added to the number of iterations whereas Pennec
uses time proportional to the number of points multiplied by the number of iterations.

The BS method is harder to implement and suffers from a slight loss of accuracy for
the near degenerate case. [ This may be a flaw in our implementation. ] If speed is the
most important criterium it is the best algorithm.

The SH method has the disadvantage of requiring additional parameters to be chosen.
It fails in the near-degenerate case.

References

[1] R. Benjemaa and F. Schmitt. A solution for the registration of multiple 3d point sets
using unit quaternions. In Fifth European Conference on Computer Vision, pages
34–50, Freiburg, Germany, 1998.

[2] R. Bergevin, D. Laurendeau, and D. Poussart. Registering range view of multipart
objects. Computer Vision and Image Understanding, 61(1):1–16, 1995.

[3] P.J. Besl and N.D. McKay. A method for registration of 3D shapes. IEEE Trans.
Pattern Analysis and Machine Intell., 14(2):239–256, 1992.

[4] G. Blais and M. D. Levine. Registering multiview range data to create 3D computer
objects. IEEE Trans. Pattern Analysis and Machine Intell., 17(8):820–824, 1995.

[5] Y. Chen and G. Medioni. Object modelling by registration of multiple range images.
Image and Vision Computing, 10(3):145–155, 1992.

[6] C. Dorai, J. Weng, and A.K. Jain. Optimal registration of multiple range views. In
12th Int. Conference on Pattern Recognition, pages A569–571, Jerusalem, Israel,
1994.

[7] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3D rigid body transforma-
tions: a comparison of four major algorithms. Machine Vision and Applications,
9:272–290, 1997.

[8] A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt. Implicit surface based ge-
ometric fusion. Computer Vision and Image Understanding, 69(3):273–291, 1998.

[9] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour. Closed form solution of absolute
orientation using orthonormal matrices. J. of Optical Society of America, A5:1128–
1135, 1988.

[10] K. Kanatani. Analysis of 3D rotation fitting. IEEE Trans. Pattern Analysis and
Machine Intell., 16(5):543–549, 1994.

[11] X. Pennec. Multiple registration and mean rigid shapes: Application to the 3D case.
In 16th Leeds Annual Statistical Workshop, pages 178–185, Leeds, U.K., 1996.

[12] A. J. Stoddart and A. Hilton. Registration of multiple point sets. In 13th Int. Con-
ference on Pattern Recognition, pages B40–44, Vienna, Austria, 1996.

BMVC99

244


