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Abstract

In this paper we describe a method to compute the collineation ma-

trix between two unmatched images of an unknown planar contour

described using a B-spline snake. The two images of the contour are

matched and the collineationmatrix is used to servo a camera mounted

on the robot end-e�ector using a 2 1/2 D visual servoing technique.

The experimental results, obtained using common planar objects, show

that our method give very good results and allow the robot end-e�ector

to be positioned with a great precision.

1 Introduction

The visual servoing scheme of robot manipulators can be divided in three steps. In

the �rst o�-line learning step, the reference image of the object corresponding to a

desired position of the robot is acquired and some image features are extracted. In

general, objects are represented by free-form curves, i.e., arbitrary space curves of

the type found in practice. A curve is usually described as a set of chained points.

The reference image can be obtained using the teaching by showing technique

(moving the robot in the desired position with respect to the object) or using a

CAD model of the object. In the second o�-line step, after the robot and/or the

object have been moved, the problem is to �nd the point-to-point correspondence

from two images taken at two di�erent arbitrary robot positions. Finally, in the

third on-line step, the robot is commanded so that the current features reach their

desired position in the image.

Indeed, the second step is crucial for any visual servoing technique, using one

or more cameras. Geometric curve matching is a di�cult problem in computer

vision. In general, the problem can be solved partially by �nding a geometric

invariant for the curve. Geometric invariants are shape measures that remain

constant under change between viewpoints [2] [4]. Indeed, the invariant measured

on the object should be constant in all images and thus the matching process

has to deal only with the variations between di�erent objects, rather than those

produced by viewing a single object. The main methods for curve matching are

based on �nding invariants to the transformation linking two images of the curve.
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Geometric invariants have been studied extensively [10] [5] [6]. How ev er, existing

invarian ts su�erfrom occlusion and image noise. T ocope with these problems,

semi-local integral invariants were proposed in [8]. They show ed that it is possible

to de�ne invarian ts semi-locally with a low er order ofderiv atives and hence less

sensitiv eto noise. Although semi-local in tegral invariants reduce the order of

deriv ativ es required,it is still high in the general a�ne case. A quasi-invariant

parametrisation was in troduced in [9] which make it possible to use second order

deriv ativ es instead of fourth and �fth.

Not only derivatives of high order are di�cult to calculate sincesensitiv e to

noise, but some curves do not allow the computation of derivatives up to second

order (e.g. polygonal curves). Hence, for these contours, it is not possible to

use di�erential or semi local-integral invariants, while it would be possible to use

invarian ts based on features like corners that, however, are not present in smooth

curv es.Our method allows us to deal with both previous cases. It is based on the

hypothesis that the object has already been recognised (by hand in the presented

experiments) and that occlusions can occur only during the servoing and not in the

matching step. T ogether with computing the correspondences betw een the points

of the t wo contours, the homography matrix betw een the tw o views is estimated

in order to use the visual servoing method proposed in [3]. This approach is called

2 1/2 D visual servoing since the input is expressed in part in the 3D Cartesian

space and in part in the 2D image space. More precisely ,it is based on the

camera displacement estimation from the homography matrix (the rotation and

the scaled translation of the camera) betw een the current and desired views of an

object. Using such a scheme, where the rotational control loop can be decoupled

from the translational one, the convergence can be ensured in all the task space

(i.e. for an y initial camera position).

The paper is organised as follows. In the �rst section, w epresent the algo-

rithm for matching tw oviews of a contour and, at the same time, for �nding

the collineation betw eenthem. In the second section, w eshow how to use the

collineation to servo the robot with the 2 1/2 D visual servoing technique. In the

third section, experimental results are illustrated to demonstrate the validity of

our method. Finally, in the conclusion we discuss its possible improvements.

2 Homography estimation

This section describes how estimating the collineationG existing betw een the tw o

views of one curve without \a priori" knowing the matching between the points.

Let be S�;S 2 Rn�2 the matrices containing respectively the desired B-spline snake

and the initial B-spline snake, that is S� = [s�
x
; s
�

y
] and S = [sx; sy] (where the

vectors sx and sy contains the coordinates of n points equally distributed on the

B-spline snakes). In the �rst subsection, we analyse the algorithm for determining

an estimate of the collineation matrixG. Indeed, after the collineation matrix has

been estimated, the homography matrix can be easily computed up to a scalar

factor using the matrix of the camera internal parameters A:

H = AGA
�1 (1)

In the second subsection, we sho w the results obtained with our method.
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2.1 The algorithm

The algorithm is made up of two main parts. The �rst, the correspondence �nder,

determines the correspondence index q
� betw eenthe desired B-spline snake and

the initial B-spline snake, that is the index that locates a generic point of S� on S.

In fact, the tw o B-spline snakes are built by starting from di�erent points on the

curve and there is no a priori correspondence. The second, the collineation �nder,

calculates the matrix G taking into account the correspondence found in the �rst

stage. Since the collineation matrix is de�ned up to a scalar factor, w e can set,

without loss of generality,G(3; 3) = 1. Moreover, w e decompose the matrix as

G =

�
G
w

g7; g8; 1

�
(2)

where Gw 2 R2�3 is the weak perspective sub-matrix.

Consider �rst the correspondence �nder. We de�ne an arc-length coordinate q in

order to compute the matching of the starting point on the B-spline snakes. For

each integer q 2 [1; n] we determine the correspondence error �q with the following

algorithm:

1) �nd the least-squares solution bGw

q
= argminGw

q

P
n

j=1
kbjk

2 subject to the

linear constraint�
s
�

x
(j + q)

s
�

y
(j + q)

�
=G

w

q

2
4 sx(j)

sy(j)

1

3
5+ bj 81 � j � n (3)

where bj 2 R
2 is the error. An index j + q greater than the length n of the

B-spline snake indicates the point number ((j + q � 1) mod n) + 1, as if the

B-spline snake was periodic. In this step, we estimate bGw

q
which depends on

the unknown q.

2) compute the reprojected snake bS� using the estimated weak perspective ma-

trix bGw

q
, i.e.

� bs�
x
(j)bs�

y
(j)

�
= bGw

q

2
4 sx(j)

sy(j)

1

3
5 81 � j � n (4)

3) redistribute the points of bS� equally on the B-spline snake and compute againbGw

q
as in 1) using the reprojected snake bS� instead of S�. The correspondence

error is:

�q =

vuut 1

n

nX
j=1

kbjk
2 (5)

The correspondence coordinate q� is de�ned as q� = argmin
q
�q (i.e. the value of

q which minimises the error �q).

Now, let's see the collineation �nder. First of all, we set bGw = G
w

q�
. We �nd

the collineation G in this way:
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1) set k = 1 and compute the reprojected snake Ŝ� using the estimated weak

perspective matrix bGw and equally distribute the points of bS� on the B-spline
snake;

2) estimate the two unknowns [g7; g8] by solving [bg7; bg8] = argmin
g7;g8

nX
j=1

kbjk
2,

subject to:

� bs�
x
(j + q

�)bs�
y
(j + q

�)

�
=

bGw

2
4 sx(j)

sy(j)

1

3
5

[g7; g8; 1]

2
4 sx(j)

sy(j)

1

3
5
+ bj 81 � j � n (6)

3) estimate again bGw = argminGw

P
n

j=1
kbjk

2, subject to the constraint (lin-

ear in Gw):

� bs�
x
(j + q

�)bs�
y
(j + q

�)

�
=

G
w

2
4 sx(j)

sy(j)

1

3
5

[bg7; bg8; 1]
2
4 sx(j)

sy(j)

1

3
5
+ bj 81 � j � n (7)

4) set ek =

vuut 1

n

nX
j=1

kbjk
2 and the collineation matrix to bG =

� bGw

bg7; bg8; 1
�
;

5) compute the reprojected snake bS� using the estimated matrix bG, i.e.:

2
4 bs�x(j)bs�

y
(j)

1

3
5 =

bG
2
4 sx(j)

sy(j)

1

3
5

[bg7; bg8; 1]
2
4 sx(j)

sy(j)

1

3
5

81 � j � n (8)

6) equally distribute the points of bS� on the B-spline snake, increases k (if

k < kMAX ) and go to 2);

The best collineation matrix G minimise the error ek. The second part of the

algorithm depends on the value q� found in the �rst part. Under weak perspective

transformations the value will be accurate but not under full perspective trans-

formations. T ocope with this problem the algorithm can be iterated using in

the �rst part the parameters [bg7; bg8] estimated in the second part. Obviously, the

curv es for which we wish to compute the collineation cannot have symmetries (e.g.

rotational symmetries).In fact, for these curv es, the correspondence is ambiguous

if there are not a priori hypothesises.
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2.2 Examples

In the �gures below we can see the results of the algorithm described in the last

subsection. In each image the dotted curve represents the initial view of the object,

the solid curve is the desired view. The crosses represent the initial curve projected

using the collineationG. Figure 2.2(a) shows the case of translation and rotation

around optical axis. The rotations around the other axes are small. Figure 2.2(b)

shows a more general case, with big rotations around all the axes. In both case

the estimated collineation, obtained with n = 64, is in good agreement with the

image of the curve.

50 100 150 200 250 300 350 400 450 500
250

300

350

400

450

500

550

(a) translation and simple rotation

100 150 200 250 300 350 400
200

250

300

350

400

450

(b) general translation and rotation

Figure 1: Results using general contours

3 Visual Servoing

3.1 Homography matrix decomposition

After matrix H is computed, R, t=d� and n� can be estimated which provides a

partial pose estimation. More precisely, H can be written [1]:

H = R+
t

d
�
n
�T (9)

where R and t are the rotational matrix and the translational vector betw een

the current camera frame F and the desired camera frame F
� respectively, n�

is the unit vector normal to the target plane � expressed in F
� and d

� is the

distance betw een the origin ofF � and �. Unfortunately, in the most general case,

w eha vetw odi�erent solutions. As the target is planar, the indetermination is

eliminated by choosing the solution which is such that the vector n� is as co-linear

as possible with the desired orientation of the camera optical axis. Let us notice

that the structure of the reference plane can be directly reconstructed from the

homography matrix. F or example, the ratio� between the Z coordinate of a 3D
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reference point lying on � and d
� will be used further:

� =
Z

d
�
=

det(H)

nTm
(10)

where m is the v ector containing the metric image coordinates of the point.

3.2 Choosing the control v ector

In order to control the camera orien tation,w euse of course the 3D estimated

rotation R betw eenF and F� (that has to reach the identity matrix). Let u be

the rotation axis and � the rotation angle obtained from R. The time variation of

u� can be expressed as a function of the camera velocit y screwv =
�
�
T

!
T

�T

(where the three dimensional vectors � and ! are the translational and rotational

camera velocit y) under the following form:

d(u�)

dt

=
�
0 Lw

�
v (11)

where Lw, giv en in [3], is such that Lw
�1
u� = u�. The control of the camera

orien tation is thus decoupled from the control of its position since the former is

directly available from the obtained partial pose.

The position of the camera can be controlled in the image space and in the

Cartesian space at the same time. Consider a point P (called the reference point)

of the observed object. The time derivativ e of its coordinatesx, expressed in the

current camera frame, can be written as:

_x =
�
�I3 [x]�

�
v (12)

Let us de�ne the extended image coordinates me as follows:

me =
�
x y z

�T
=
�

X

Z

Y

Z
log(Z)

�T
(13)

where z = log(Z) is a supplementary normalised coordinate. The time derivativ e

of the extended image coordinates can be written as:

_me =

2
4 _x

_y

_z

3
5 =

2
64

_X

Z
� X

Z

_Z

Z
_Y

Z
� Y

Z

_Z

Z
_Z

Z

3
75 =

1

Z

2
4 1 0 �

X

Z

0 1 �Y

Z

0 0 1

3
5
2
4 _

X

_
Y

_
Z

3
5 = �

1

Z

Lv(m) _x

(14)

where Lv(m) is an upper triangular matrix given by:

Lv(m) =

2
4 �1 0 x

0 �1 y

0 0 �1

3
5 (15)

Then, using equation (12) with equation (14), we �nally obtain (since x = Zm):

_me =
�

1

Z
Lv(m) Lv!(m)

�
v (16)

where:

Lv!(m) = Lv(m)[m]� =

2
4 xy �(1 + x

2) y

(1 + y
2) �xy �x

�y x 0

3
5 (17)
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3.3 The control law

A general positioning task controlling the 6 camera d.o.f. can be described as the

regulation to zero of a task function [7]. In the case of 2 1/2 D visual servoing, the

positioning task controlling the 6 camera d.o.f. can be described as the regulation

to zero of the following task function:

e =
�
m

T

e
�mT�

e
u
T
�

�T
(18)

where the �rst tw o components ofme�m
�

e
are directly computed from the current

and desired images, and its last component, equal to log (Z=Z�), is estimated using

equation (10). The exponential convergence ofme tow ardm�

e
and u� tow ard 0

can beobtained b y imposing _e = ��e (where � tunes the convergence rate). If

the target is assumed to be motionless the corresponding control law is given by:

v = ��bL�1be (19)

where v is the camera velocit y sen t to the robot controller, bL is an approximation

of the interaction matrix related to the time variation of the task function e, andbe is the estimated task function. In our case, we have:

v = ��

� b
Z
bL�1
v

� bZbL�1
v
bL�1
v!
bL!

0 I3

� � bme � bm�

ebub�
�

(20)

L is an upper block triangular matrix. If the point me lies on �, then Z =

� d
� (see equation (10)) and the distance d

� is the only unknown parameter.

An approximate value has thus to be chosen during the o�-line learning stage.

How ev er, this v alue has not to be precisely determined (by hand in the following

experiments) since it has a small in
uenceon the stability of the system. More

precisely ,it in
uences the time-to-convergence of the translational velocit y and

the amplitude of the possible tracking error due to a wrong compensation of the

rotational motion. As far as the tracking error is concerned, it is proportional to

the rotational velocity and thus disappears when the camera is correctly oriented.

Let us remark that the rotational control loop is decoupled from the translational

one. A such decoupled system allo ws to obtain the con vergencein all the task

space if exact model and perfect measurements are assumed. F urthermoreand

contrarily to 2D and 3D visual servoings, it is possible to obtain the necessary

and su�cient conditions for local asymptotic stabilit y,and su�cient conditions

for global asymptotic stability in presence of camera calibration errors (see [3] for

more details).

4 Experimental Results

For our experiments, w e use a Mitsubishi robot RV-E2 Movemaster with 6 d.o.f.

Consider the initial image shown in Figure 2(c), constituted by a 
oppy disk and

a remote control. The selected B-spline snake represents the initial curve. Figure

2(a) shows the initial robot position. We wish to move the robot from this position

to the desired position show ed inFigure 2(b), corresponding at the object view
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of Figure 2(d), where the B-spline snake indicates the desired curve. After the

homography estimation procedure and visual servoing w eobtained the view of

the object shown in Figure 3. The desired and �nal B-spline snakes are shown

to be in good agreement. The visual servoing stopped when the error betw een

corresponding points is less than 0.5 pixel. Figure 4sho ws thebeha viour of the

extended image coordinates and orientation of the camera and its translational and

rotational velocit y (i.e. the control law). The control la w is stable and the error

converge to zero but not exponentially since the system is coarsely calibrated and

the distance betw een the camera and the target was set to 40 cm while its real value

w as 60 cm. The convergence of the visual servoing demonstrates that the initial

matching was good in spite of the noise and the general camera displacement.

(a) desired robot position (b) initial robot position

(c) desired image (d) initial image

Figure 2: initial and desired views of the object
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Figure 3: �nal view.
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Figure 4: experimental results with a general camera displacement

BMVC99

232



British Machine Vision Conference

5 Conclusion

In this paper we have presented a method for matching and computing the homog-

raphy matrix between tw o views of a planar contour. Our methods provides very

good results ev enwhen geometric invariants cannot be used. The experimental

results con�rm that recovering the camera motion from an estimated homography

matrix gives good results. The homography matrix estimation can be useful in

all applications where scaled 3D reconstruction is useful. In our case, the motion

parameters extracted from the homography matrix have been used to perform 2

1/2 D visual servoing. This method does not need any 3D model of the target, nor

a precise camera calibration and presents very in teresting decoupling and stability

properties. F uture work will be devoted to the extending the method for matching

complex images even in case of occlusions.
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