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Abstract

An automated method to register Medical Images is presented in this
work. This new technique employs an iterative warping scheme and is
performed, either over fully pixel information or using geometrical fea-
tures such as ridges. The warp at each iteration is given by a number of
local Finite Element transformations which provide a non-linear global
warp. Results show that this technique can be applied satisfactorily to
images with a severe level of distortions.

1 Introduction

Image registration is an incipient image processing technique in continuous devel-
opment and research. It is an important technique for a great variety of appli-
cations such as aerial image analysis, stereo vision, motion analysis and medical
image diagnosis.

In medical imaging, image registration is used in order to enhance the infor-
mation content of the data and thus, its clinical value. Images from the same or
di�erent modalities are registered, providing complementary information to the
analyst. Due to its importance, there is a need to �nd a good registration algo-
rithm which does not require human interaction.

There exists a variety of registration methods that have been proposed, a good
classi�cation being found in [14]. In our work we pay main attention to two
aspects of the mentioned classi�cation, the origin of the image properties and the
elasticity of the transformation used to transform the coordinates of the source to
the target image. Intrinsic image properties like pixel intensities and ridges are
used here. Pixel intensity techniques are mainly used in monomodal applications,
since the image intensity changes in di�erent modalities. Ridges on the other hand,
convey meaningful structural information across modalities, as well as providing
data reduction and are proven to be viable for registration [1, 10, 13].

Normally the variations in images involved in the registration are very complex
and cannot be modelled through a rigid body transformation, which contains zero
elasticity. To overcome this complexity, our algorithmmakes use of a �nite element
transformation (FET), which produces a warp deformation and is computationally
less expensive than other warping techniques like the thin plate spline [3].
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2 Implementation

The method here described is a modi�cation of Collins et al's approach[5] in which
images to be registered are divided in a number of non overlapping blocks or subim-
ages and their centre is used as a control point for the transformation. We do the
same process here for two approaches, using pixel intensity or ridges with a hierar-
chical iterative scheme. This scheme starts by splitting the images into a minimum
number of blocks and, a similarity metric is minim ised to give a displacement vec-
tor of the movement of pixels within the block. The FET is computed between
correspondent blocks which gives a number of continuous local warps that overall
provide a non-linear global one. At the next iteration, the deformed image in the
previous iteration is partitioned by a larger number of blocks, and the FET is
computed again. This iterative process �nishes when a similarity metric (mean
squared error, mutual information, correlation) of the deformed and target images
at the current iteration is greater than at the previous one or, the size of the block
is too small. A more detailed explanation is given below.

The �rst part of our technique is the identi�cation of the control points to be
involved in the registration. As has been mentioned, our iterative process starts
splitting the image into four non overlapping blocks (2 partitions in each axes), so
four points are selected. Next step is to have a measure of the movement of these
points in the image to be registered (the target). Here is where a di�erence exists
between the use of pixel intensity or ridges, the way in which the similarity metric
is computed. Both are explained separately in the next subsections.

2.1 Computing the similarity metric for pixel in tensity

2.1.1 Cross-correlation

For the pixel intensity case, the similarity metric is obtained by means of applying
a normalised cross-correlation between each block and the target.

C(u; v) =

P
x;y

B(i;j)(x; y)T (x � u; y � v)qP
x;y

T 2(x � u; y � v)
(1)

In equation 1 (u; v) are the coordinates of the entire target image, (x; y) the
coordinates of the block (i; j), where (i; j) stand for the position of the block in the
source image. The block is �rst centred at the centre of an imaginary correspondent

block in the target image and then translated over a search window surrounding
the imaginary block. If the source block matches the target one exactly, except for
an intensity scale factor at a translation (umax; vmax), the cross correlation would
have its peak at C(umax; vmax).

In our scheme a search window around the block is used. The size of this
window is 7 pixels greater than the blocksize. Therefore, 49 correlation values are
computed for each block. This number can be reduced in each iteration, since the
algorithm starts converging to the solution, and every source block is more similar
to its counterpart in the target image.

It is worth noting the limitations of the cross correlation scheme, �rst of all
because it can only take account of a block being translated, and secondly because
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in a multimodal application pixels are not similar due to the physical realities of
the images to be registered.

2.1.2 Local Mutual Information

The mutual information metric (MI) cannot be applied to local registration unless
the local joint histogram has su�cient statistical power, for example, the size of
the window over which the MI is computed is v ery large [11]. This does not apply

here, since at every iteration the size of the block is smaller. To overcome this
problem we use the approach by Maintz et al [11]. In their work, they extract the
conditional probability densities p(x j y), i.e. given a grey value x from the source
image S we compute the probability that this value corresponds to any grey value
y ocurrying in target image T .

After having done this, we proceed to evaluate the local gray value correspon-
dence probability cp between source and target windows, as has been done for the
cross-correlation.

cp(u; v) =
X
x;y

p(T (x� u; y � v) j B(i;j)(x; y)) (2)

The notation is the same as for equation 1. The coordinates (u; v) that max-
imise cp represent the best matching between blocks. This measure can be applied
to the multimodal case, however there are some conditions that have to be met.
Firstly, the images must present variations due to small local elastic deformations.
Secondly, the conditional probabilities from the joint histogram must be adequate
approximations of the \real probabilities" after elastic registration.

It is important to point out that both measures (cross-correlation and local
mutual information) are only computed over the overlapping part of the images
and thus, the pixels falling outside the borders are discarded.

2.2 Computing the similarity metric for ridges

By obtaining the ridges of the images we are reducing the amount of information
and thus, the computational time invested to perform the registration.

The way we obtain the displacement vectors for each of the blocks is through the
following procedure. Let R(S) be the ridge image of the source. W e compute the
chamfer distance transform [4 ] of the target ridge-like imageD[R(T )]. According
to the warping scheme, we divide R(S) and D[R(T )] into blocks, with the block
size in the latter being 10 pixels larger so that they are overlapping. This is done
in order to take account of the movement of ridges from one block to another.

The goal of this process is to �nd a transformation that maps the ridges in the
source blocks to those in the target. The model of the transformation we employ
is an a�ne transformation, which for the 2D case can be expressed as:

�
x0

y0

�
=

�
a b

c d

��
x

y

�
+

�
tx
ty

�
(3)

This transformation will map any ridge point (x; y) in the source image to a
coordinate (x0; y0) in the target image. For a given a�ne transformation and for
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every ridge point in the source, we compute the sum of the values of the distanced
image at (x0; y0), to de�ne a metric M =

P
x0y0 D[R(T )], where T is the target

image, R the ridge �nding operator and D the distance operator. The coordinates
(x0; y0) are given by equation 3.where T is the target image, R the ridge �nding
operator and D the chamfer distance operator. The coordinates (x0; y0) are given
by equation 3.

Next point is optimize the measure M and �nd the minimum value of it. A
value ofM = 0 would mean that the matching of the ridges is perfect, however this
is not possible since the number of ridges in the source di�ers that from the target.
Choosing the transformation that minim ises metricM represents the most of the
ridges in the source block fall in a small distance from the ridges in the target.
The optimisation procedure is implemen ted by using the simplex method [7 ].

The optimisation problem then is a m ultidimensional minimi sation over 6 vari-
ables (the parameters of the a�ne). The simplex method requires n+1 estimates
in order to solve an n dimensional problem. Our initial estimate of the a�ne
transformation comes from a Principal Component match between correspondent
source and target blocks, while the other n come from varying each of the param-
eters of the aforementioned a�ne by a small o�set.

After the optimisation is done, we end up having an a�ne transform for each
of the blocks. This a�ne transformation cannot be applied directly to the original
block source image since the deformation would not be continuous. To overcome
this problem we have developed the next deformation process.

2.3 Deformation

After the similarity metric is computed, the displacement given by the crosscor-
relation or the a�ne transformation is applied only to the centre of the block, so
that we end up having four points in the source image which are displaced from
the original one, as is shown in Figure 1.

. .

. . . .
..

Figure 1: Centres of each block before and after applying the displacement.

In Figure 1 the initial square has been deformed to a quadrilateral. To make a

continuous warp we employ a Finite Element technique which provides a bilinear

mapping from a poin t within the square into a point within the quadrilateral, as
illustrated in Figure 2.

The formula for the �nite element transformation from a unit square to a

quadrilateral is given by:

x = (1� �)(1� �)P1x + �(1� �)P2x + (1� �)�P3x + ��P4x

y = (1� �)(1� �)P1y + �(1� �)P2y + (1� �)�P3y + ��P4y

0 � � � 1 0 � � � 1 (4)

BMVC99

217



British Machine Vision Conference

(0,0) (1,0)

(0,1) (1,1)

(p1x,p1y)

(p2x,p2y)

(p3x,p3y)

(p4x,p4y)

..(ε,η) (x,y)

Figure 2: FET mapping.

For mapping general quadrilaterals we �rst transform to a unit square, and
from this to the target quadrilateral, as shown in Figure 3.

(0,0)

(0,1)

(0,0) (1,0)

(1,1)

A

B

C

D

A’

B’

C’
D’

Figure 3: Transformation from quadrilateral to quadrilateral.

For this step we need the inverse of equation 4. A Newton-Raphson process was

implemented to �nd this inverse. Having done this we are capable of transforming

any quadrilateral into another one and it is possible to warp all the regions in our
source image.

This kind of warp is simpler than the Thin Plate Spline [3] and computation-

ally less expensive since less operations are needed. Another intention of using this

transformation instead of the TPS is that the latter technique leads to a global

unique warp whereas with the Finite Element method, the global warp is a com-

position of local warps. Moreover, points in the border of the image must remain
�xed, and the TPS stretches all points as a consequence of its global nature.

Figure 4: From left to right. Original, resulting deformed image using the TPS,

FET.

Figure 4a) shows a synthetic image of a grid (64*64 pixels). The same set of

control points was used to de�ne both a TPS and FET warping procedures. In

4b) the movement of all the pixels within the image (including borders) which

produces a dark gap in the left side, representing points outside the support of the

original image.
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We ensure border preservation by de�ning particular quadrilaterals around the
border, where two vertices are �xed and two are movable, Figure 5. These warps
preserve the continuity in the image, since pixels within the border of adjacent
blocks are mapped into the same position in the global coordinate system, in
other words, �nal conditions in the �rst adjacent warp are initial conditions in the
second.

. .

. . . .. .
Fixed

Movable

Figure 5: Di�erent warps are performed outside the original quadrilateral.

The �nite element mapping produces a transformation in which the coordinates
are no longer integer points, therefore it is necessary to resample the image. The

resample is accomplished by means of cubic spline interpolation, in order to ensure

a continuous deformation.

After all �ve warps for the �rst iteration are obtained and the image is re-

sampled, we perform an iterative process in which the previous result serves as
the basis for the next iteration but with the number of divisions along each axes

doubled.

. .

. .

. . . .
. .
. .

....

Figure 6: Points involved in the second iteration and di�erent warping areas.

In Figure 6 we can see the number of local warps that need to be performed in

the second iteration. The iterative scheme terminates when the similarit ymeasure
at the current iteration is greater than the previous one.

3 Results

Some results are shown below for synthetic and real images:

3.1 Test on synthetic images

In Figure 7(left) we show a synthetic image of 64*64 pixels consisting of a dark

rectangle over a light background as the source image, while the target 7(right),
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consists of a deformed version using the Thin Plate Spline(TPS) and 32 landmarks.

Figure 7: Synthetic images. (Left) Source, (Right) Target

The test of the algorithm on these synthetic images, using the cross-correlation
approach, provided the results in the column entitled \Synthetic" of Table 1.
This data contains the mean squared error (MSE) of the resultan t image at each
iteration in comparison with the target. Figure 8 on the other hand, depicts the
deformation process of the source image in the iterative scheme.

Figure 8: First 5 iterations of the algorithm applied to the synthetic image pair

3.2 Test on real data

Next pair (pairB) are 256*256 MRI images (Figure 9). The source w as deformed
using the TPS and 16 landmarks to produce the target image. The severe local
distortions in the target are quite noticeable.

Figure 9: Image pair B, (Left) Source and (Right) Target

This pair of images served as input to our algorithm using the local mutual
information approach. The reduction in the similarity metric (MSE) for this pair
is also shown in Table 1, while the series of warped images from the �rst �ve
iterations are depicted in Figure 10.
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Figure 10: Warped images at the �rst �ve iterations using the local mutual infor-
mation approach

Figure 11, corresponds to pairC images. These images contain two properties
that make them ideal for testing the ridge-based approach. Firstly, they present
relevant local deformations, like those found in the ventricles. Secondly, they
contain di�erent graylevel scale, as can be seen in the composite images in Figure
12. This makes them inappropriate for the cross-correlation approach. In �gure 12
(left) the result at the last iteration of the algorithm is shown. Figures 12 (centre
and right) depict the composite between the original source and target C, and the
registered image with the target, respectively.

Figure 11: pair C, (Left)Source and (Right)Target

In Table 1 the decrease in the MSE for the �rst two pair of images is evi-
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Figure 12: Registered Image (Left), composite images of sourceC and TargetC
(Centre), composite of registered and TargetC (Right)

MSE

Iteration Synthetic Pair B Pair C

0 40.715 23.6419 54.3557

1 34.9199 22.679 52.7988

2 33.4544 21.6005 52.208

3 24.6298 18.4217 49.9876

4 20.6473 13.8778 48.9237

5 16.1964 10.0338 47.1226

Table 1: Computed MSE for the three approac hes

dent, from 40.71 to 16.19, and from 23.64 to 10.03, which gives a reduction of
61% and 58%, respectively. These results make this algorithm very promising for
monomoda l registration in images with severe level of distortions. The ridge-based
approach did not perform as well in reducing the MSE, however the composite im-
age 12(right) shows that the ventricles were perfectly matched. Moreover, the
ridge-based approach can be used for multimodal registration such as between
MRI and CT, whereas intensity based transformations cannot as the intensity
varies from one modality to another.

4 Conclusions

We have presented a simple hierarchical non-linear registration algorithm that is
faster than other techniques like the TPS. Use of geometrical features and pixel
intensity means that it will be applicable to both, mono and m ultimodal problems.
The implementation for 3D images does not di�er a great deal from the actual
one.

W e are currently investigating the addition of edges in conjunction with ridges,
to compute the a�ne transform in subsection 2.2. W e are also studying a scale
space hierarchy where the �nal warp at coarse scale is used to initialise a warp at
a lower scale.
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