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Abstract

Fourier analysis is often used as a tool to facilitate the extraction of tex-
ture information from image data. However, in situations where the texture
patch does not entirely fill the region of analysis, information relating to the
shape of the patch becomes entwined with its texture content, thus contami-
nating the Fourier spectrum and corrupting the texture information. We pro-
pose the use of a frequency deconvolution algorithm to remove the artefacts
introduced by shape components, permitting the Fourier-based analysis of
non-rectangular image patches. The algorithm is demostrated on a texture
recognition task involving the entire Brodatz album.

1 Introduction

Texture is an important source of information for a number of computer vision and graph-
ics applications. Although it is difficult to construct a formal definition, texture is intu-
itively related to luminance variations in the image and can be characterised using prop-
erties such as regularity, coarseness, contrast, local and global structure, and directional-
ity [4, 14]. A system that is required to deliver meaningful judgements concerning texture,
needs to be able to extract a description of the image data in a form that explicitly captures
these properties.

It has been suggested that the Fourier domain may provide a more favourable envi-
ronment in which to work and a number of extensions, aimed at exploiting the Fourier
representation of texture information, have been proposed [1, 6, 8]. However, many of
these techniques have been demonstrated using tasks involving only rectangular texture
patches. In real-world environments, we are confronted by a wide range of different ob-
ject shapes with further variation introduced by the effects of occlusion. Due to the nature
of the Fourier analysis, if the texture patch we wish to analyse does not entirely fill the
region of analysis, then information relating to the shape of the patch becomes entwined
with its texture content thus contaminating the Fourier spectrum and corrupting the tex-
ture information.

In this study, we investigate how the shape of the patch effects its Fourier representa-
tion, and what the repercussions might be for the overall analysis of the texture. We go
on to propose the use of a frequency deconvolution algorithm to remove these effects and
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provide a shape-invariant Fourier description of the texture content of non-rectangular im-
age patches. The approach is based on the CLEAN deconvolution algorithm [5], originally
developed for aperture synthesis in radio astronomy. We adapt the algorithm, and show
how it can be applied to the analysis of non-rectangular texture patches.

2 Texture Recognition

In this section a texture recognition system is described. The decision process is driven by
features derived from the principal components analysis of the Fourier domain [8]. The
system is used here to investigate the effects of shape variation on Fourier-based texture
analysis and to demonstrate the ability of the deconvolution algorithm to remove these
effects.

2.1 The Texture Database

The texture patches used in this study were taken from the Brodatz album [2]. The album
consists 112 pictures of natural textures and represents a diverse range of texture proper-
ties. Each picture in the album was scanned to produce a 640x 640, 8-bit grey level image.
From each of these source images, nine non-overlapping 128x 128 sub-regions were ex-
tracted to form a set of 1008 square texture patches. A similar set of non-rectangular
patches was also constructed. Each patch here was extracted using a mask chosen at ran-
dom from a set of 10 possible shapes. As before, nine non-overlapping sub-regions were
extracted from each source image. To insure a fair comparison between the two sets, the
size of each shape mask was controlled such that the same surface area of texture was
revealed as that of the square patches. Examples of the texture patches, taken from both
sets, are shown in Figure 1.

Figure 1: Examples from the Texture Database: square patches (top); non-rectangular
patches (bottom).
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2.2 Texture Features

The texture features are derived from the principal components analysis (PCA) of the
Fourier domain as described in [8]. For the purpose of completeness, we summarise the
method here.

From the set of square texture patches, ten percent (p = 100) are chosen at random
to provide a “training” set for the analysis. For each image in the training set, the Dis-
crete Fourier Transform (DFT) is computed and a 1-d vector, representing the magnitude
components in raster-scan order, is formed: x; € R™ i =1,...,p:n = 1282, p = 100.
To minimise the effects caused by boundary discontinuities, each image was mixed with
a Gaussian window (G = 24) prior to the transform. The covariance matrix is calculated
from: C = %Zipzl (x; —m)(x; —m)" = XX’ where m is the sample mean, m = %Zip:l X;.
The eigenvectors, q;, and corresponding eigenvalues, A;, are determined by the character-
istic equation:

qu:XX’qj:kj @))

Using the fact that there can be at most p eigenvectors and p < n, computation can be
saved by first performing the eigen analysis on the inner product:

Xlelj = 7\,jllj (2)
Pre-multiplying both sides of 2 by X gives:

From Equation 3, it is observed that the eigenvectors for the original covariance matrix,
XX/, are given by q; = Xu;.

The eigenvectors represent an alternative orthogonal basis whereby the importance of
each axis, in terms of the variance it accounts for, is given by its corresponding eigenvalue.
The vectors, ordered by their eigenvalues, reveal the principal modes of variation.

The texture features are formed by projecting the DFT magnitudes onto the principal
modes. In the experiments reported here, the first 40 modes were used as texture features.
Accounting for over 85% of the variance found in the training set, this choice provides
a compact, yet expressive representation of power spectra typical to those generated by
textures.

3 Shape Variation on Texture Analysis

3.1 Experiments

A recognition task is set up to determine the effect of introducing arbitrarily-shaped im-
age patches on Fourier-based texture analysis. For a given patch, the system is required
to decide which of the 112 Brodatz texture it most closely corresponds to. The classifica-
tion is performed using a k-nearest-neighbour paradigm, based on the Euclidean distance
between feature vectors. For each of the 112 textures, 4 member patches are used to form
an estimate of the class distributions over the feature space. These patches are excluded
from the rest of the analysis. In the experiments reported here, k was set to 3.
The system was applied to both sets of texture patches in turn.

195



BMVC99
3.2 Results and Discussion

The overall classification accuracy attained for each set is shown in Figure 2, with indi-
vidual results given for a selection of texture classes. For the set of square texture patches,
over 76% were correctly classified, achieving a level of performance similar to those re-
ported by other Fourier-based techniques. The fact that a relatively simple classification
paradigm was used, suggests that the feature vector is largely responsible for the per-
formance of the system. On closer inspection of the misclassifications, further evidence
is revealed supporting the ability of the feature vector to capture perceptual concepts of
texture. For example, although one D022 patch was misclassified as D003, both are ex-
amples of snake skin. It is, in fact, reassuring to find that these two perceptually similar
textures generate measurably close feature vectors, despite the confusion and misclassifi-
cation that arises. Further incidents of misclassification were found for patches belonging
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Figure 2: Effects of shape variation on texture recognition

to large scale textures. It was observed that in theses case, the underlying pattern often
spans the entire source image, and as a result, each extracted patch only contains part of
the texture. Given these circumstances, it is unreasonable to expect the system to deliver
an accurate classification when only partial information is available. Indeed, it is perhaps
undesirable to match these patches which appear so unrelated, even if they do originate
from the same source.

As an overall observation, it was found that regular textures enjoyed a slight advantage
in classification accuracy.

Turning to the results found for the set of non-rectangular texture patches, it is clear
that introducing shape variations can severely disturb the analysis of texture patches. The
overall classification dropped by over 45% to only 30% correctly classified, with deterio-
ration in accuracy noted across almost all classes.

The textures feature have shown to be vulnerable to the artefacts introduced by the
shape components, responding to properties relating to the shape of the patch instead
of its texture content. Although we have used PCA to extract texture features from the
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Fourier domain, it is likely that other Fourier-based techniques would suffer a similar fate
when confronted by arbitrarily-shaped regions.

4 Frequency Deconvolution

4.1 Motivation

The experiment conducted in the previous section provides a vivid demonstration of the
detrimental effects that shape variations can have on the analysis of texture patches. If
Fourier-based techniques are to deliver meaningful judgements concerning the texture
content of non-rectangular regions, then a spectral representation of the texture needs to
be extracted that is invariant to the shape of the patch. This remains a challenging under-
taking for two reasons. Firstly, a fundamental requirement of the DFT dictates that data
samples must be contiguous, which for the case of two-dimensional images, corresponds
to a rectangular region of pixel intensities.! Secondly, Fourier analysis regards spectral
composition as a global phenomenon, and components detected via the transform are
assumed to exist over the full extent of the image.

In the remainder of this section, we propose the use of a deconvolution algorithm
to remove the artefacts introduced by the shape components, and thus provide a shape-
invariant Fourier description of the texture content of non-rectangular image patches.

4.2 Background

Deconvolution is based on the following idea. A non-rectangular texture patch, i(x,y), is
assumed to be the product of applying a binary shape mask, w(x,y), to an uncorrupted
version of the texture, ¢(x,y). By the convolution theorem, we can write:

i(x,y) =t(x,y) X w(x,y) DéT T (u,v) @W(u,v) =1(u,v) 4)

If this convolution can in some way be undone, then we can get back to the Fourier
representation of the uncorrupted version texture:

where A ® ! B denotes the deconvolution of A with respect to B.

Deconvolution, however is ill-posed. The solution is not unique, and the problem be-
comes that of choosing a plausible value from the set of possible solutions. Deconvolution
algorithms attempt to make an informed guess as to the value of unobservable samples on
the basis of what information is available.

A number of deconvolution algorithms have been proposed. Maximum Entropy,
Lucy-Richardson, and CLEAN are amongst the most commonly used techniques. Max-
imum entropy methods (e.g. [12]) attempt to select the solution that is the most consis-
tent with the observable data, while simultaneously providing maximum entropy. Here,
entropy is defined as an abstract concept which when maximised, produces a positive
image with a compressed range of pixel values. This effectively introduces a smooth-
ness constraint which favours the image that assumes the least about missing data. The

'In theory, it would be possible to adapt the Fourier transform to handle solid, convex regions. Partially filled
and/or concave regions represent a far more challenging situation.
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Lucy-Richardson deconvolution algorithm [7] employs Bayesian inference to maximise
the likelihood of the reconstructed image. Successive estimates are applied to iteratively
improve the appearance of the image.

Our approach is based on the CLEAN deconvolution algorithm, originally developed
for aperture synthesis in radio astronomy [5]. Various refinements, initiated by [3], have
since been proposed [10], and boast improved computational efficiency when dealing with
large synthesis arrays. Others [9, 13] have tailored the algorithm towards the analysis of
specialised forms of corrupted data. Our specific interest lies in the methodology sur-
rounding CLEAN deconvolution. The algorithm focuses on restoring individual spectral
elements and has since been shown to be equivalent to a least-squares fitting of sinusoids
in the spatial domain [11]. This approach is particularly appealing for our work on texture
analysis, as the reconstruction is based on the very elements we wish to examine.

4.3 Deconvolution Algorithm

It is assumed that the pure texture can be modelled by a number of harmonic components.
The deconvolution proceeds by detecting which component, when corrupted by the shape
mask, would provide the best explanation of the patterns observed in Fourier spectra.
The component is then re-located to the clean spectrum, and its footprint erased from
the corrupted spectrum. The process is repeated until only noise residuals are left in the
corrupted spectrum.

We now formulate the algorithm for the case of 1-d signals, and later extend the result
to accommodate 2-d texture images.

Consider the texture pattern, ¢(x), comprising a single sinusoidal component, having
amplitude A, frequency #, and phase ¢:

t(x) = Acos(2miix + 0). (6)
The uncorrupted Fourier representation, T (1), of this texture pattern is given by:
T(u) = ad(u— i) +a"8(u + i), )

where a = %eiq’. Let i(x) be the observed form of 7(x), as viewed through the incomplete
shape window w(x). From Equation 4, we can write:

I(u) =T (u) @ W(u).
Expanding the convolution gives:
I(u) =aW(u—14)+a"W(u+a) )

The single component pair becomes distorted, forming additional peaks as dictated by the
pattern of the spectral window, W (u). To achieve the deconvolution of Equation 5, we
need to determine the nature of the original harmonic component (i.e. i and a), given the
corrupted Fourier spectrum, (i), and the shape mask, W (u), that was responsible for the
corruption.

The form of the shape mask guarantees that dominant peak in the spectral window,
W (u), will be the DC term (z = 0). In this case, while the peaks of the original harmonic
component become distorted by the convolution, their actual position remains unaffected.
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We can therefore determine the frequency of the original sinusoid, i, by locating the peak
component pair of I(u). Before we can recover the amplitude and phase information, we
need to consider how the spectral leakage caused by one peak contributes to the overall
response observed at the other peak. Substituting for # = i in Equation 8 gives:

I(2) = aW(0) + a"W (20) C))
Using the conjugate symmetry, we rearrange to give:

(@)W — I ()W (24)
= TWEowWeaPr (10

Using this approach, we can recover the original harmonic component of 7 (), from
the corrupted spectrum, I(u), given that we know form of the corruption, W(u). If the
original signal comprises more than one harmonic component, then the process needs to
be repeated. At each iteration, a single component is retrieved and re-located to the clean
spectrum. The component’s imprint is then removed leaving the residual spectrum. The
process continues until either the level of the peak residual falls below a predetermined
noise threshold, or the number of iterations has reached some reasonable limit.

When deconvolving multiple harmonic components, a further consideration is re-
quired. The extent of the peak detected in the corrupted spectrum is no longer purely
the result of a single component pair. The distortion due to several components may con-
tribute to the peak’s response. Therefore, we assume that the detected component is only
partially responsible for the observed peak, and introduce g, the clean gain, to specify the
proportion of the component that is to be extracted. Typically the clean gain will lie in the
range 0.1 < g < 1.0. Low values will improve the stability of the algorithm, though at the
expense of requiring extra iterations to fully extract the clean components.

We now summarise the algorithm, and re-formulate the equations for the case of 2-d
data.

Let R'(u,v) be the ith residual, and R®(u,v) = I(u,v). Starting at i = 1:

1. e Find the frequency, (&', '), of the ith clean component, from the maximum of
R (u,v)]
e (alculate clean impulse, a', from:
I(@f, 6" YWo — I* (i, 9 )W (2d0', 29)
Wy — W (2al, ') 2

2. Generate the ith residual spectrum,
Ri(u,v) =R~ = (aW(u—a',v—9") + (a')* W (u+ ', v+ 7))

3. If the peak residual of R(u,v) falls below the noise threshold, or if the maximum
number of iterations has been reached, then proceed to step 4. If these termination
conditions are not met, then continue cleaning from step 1

4. Construct the clean spectrum, C, from the K clean components:

K
C(u,v) = ZaiS(u — 0y =) + (@) S(u+a, v+ 1)

i=1
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The algorithm is demonstrated in Figure 3. Each of the non-rectangular texture patches
has been deconvolved, and the result returned to the spatial domain for inspection. The
left texture patch comprises a single harmonic component, and can be fully reconstructed
by a single iteration (assuming the clean gain is set to 1.0), with zero error in the remain-
ing residual. The other patches exhibit more realistic textures, comprising many spectral
components. Although several iterations are required, the final reconstruction is impres-
sive.
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Figure 3: Texture Deconvolution. Arbitrarily-shaped texture patches (top), deconvolved
to recover the pure texture image (bottom).

S Deconvolution in Texture Analysis

5.1 Experiment

To assess the ability if the deconvolution algorithm to remove the detrimental effects
of shape variation on the analysis of texture, the experiment described in section 3 was
repeated. Deconvolution is applied to the Fourier transform prior to the projection of the
magnitude components onto the texture features. The gain, g, and the noise threshold, ¢,
were set to 0.5 and 1.0 respectively. The maximum number of iterations, , was set to 500,
although in practice this limit was rarely reached. In all other respects, the experiment was
conducted as before.

5.2 Results and Discussion

The results of this experiment, together with the previous findings, are shown in Figure 4.
It was found that the recognition system, applied to non-rectangular patches, performed
significantly better when augmented with the deconvolution algorithm. Overall classifi-
cation accuracy was improved by 40% to over 70%.

As predicted, the greatest improvements were found for patches exhibiting regular
textures. It is perhaps fitting that the deconvolution algorithm is of most benefit for those
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Figure 4: Texture recognition of deconvolved patches

textures that Fourier analysis is best equipped to deal with.

The results suggests that the deconvolution algorithm is capable of removing the arte-
facts introduced by shape components, and allows the extraction of a set of texture fea-
tures that is largely invariant to shape variations. By including the deconvolution algo-
rithm, the performance of the system is restored to a level approaching that attained for
square patches.

We anticipate that similar benefits would be observed for other applications that make
use of Fourier-based techniques for the analysis of image regions (e.g. region-based image
coding, object recognition, extraction of texture maps from real image data, etc...).

6 Conclusions

Fourier analysis is a valuable tool for extracting texture information from image data, and
a number of extensions have been proposed in the literature. However, due to the nature
of the Fourier transform, many of these techniques are only applicable to the analysis of
rectangular image patches. In situations where the texture patch does not entirely fill the
region of analysis, information relating to the shape of the patch becomes entwined with
its texture content thus contaminating the Fourier spectrum and corrupting the texture in-
formation. We have shown that Fourier-based texture features are indeed vulnerable to the
artefacts introduced by shape components, responding to properties relating to the shape
of the patch instead of its texture content. We have proposed the use of a deconvolution
algorithm to remove these artefacts. The algorithm provides a shape-invariant Fourier
description of the patch, permitting the extraction of robust texture features from non-
rectangular image patches. In a texture recognition task involving the entire Brodatz set,
classification performance was restored to a level similar to that attained for rectangular
patches. We anticipate that similar benefits would be observed for other applications that
make use of Fourier-based techniques.
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