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Abstract

We present an algorithm for determining the next best position of a

range sensor in 3D space for incrementally recovering an indoor scene.

The method works in �ve dimensions: the sensor navigates inside the

scene, and can be placed at any 3D position and oriented by a pan-

tilt head. The method is based on a mixed exhaustive search and

hill climbing optimisation, and outputs the next position in reasonable

time. Results are shown on a simulated mobile robot with a simulated

range sensor navigating in a CAD model of a scene.

1 Introduction

This paper describes an improved method of computing the next best position for

a complete and accurate three-dimensional recovery of an unknown indoor scene.

We consider a mobile robot equipped with a range sensor, and we compute the

next position and pose to place the sensor for taking the next view. Di�erent views

are registered, building up an incremental scene model. The problem addressed in

this paper is sensor placement: �nding the next view that would best improve the

current recovered scene model. In general 3D motion this is a problem with six

degrees of freedom, since the sensor can be placed anywhere in space, and can be

oriented by three rotations: pan (rotated around the vertical axis), tilt (rotated

around the horizontal axis), and roll (rotated around the optical axis).

Sensor rolling can be useful because the horizontal and vertical apertures of

the sensor may be di�erent, so di�erent scene areas can be recovered by rolling the

sensor. But in this work we assume that rolling is not allowed because conventional

pan-tilt heads do not perform this motion. So we can think of a mobile base which

moves over a 
oor, with a vertical bar to lift or lower the sensor, which is mounted

on a pan-tilt head at the extreme of the bar. This makes the problem of �nding

the next best view a �ve-dimensional one.

Other research has addressed the next best view problem for object reconstruc-

tion where the outsides of objects are seen, but not for 3D scene recovery, where

the inside of a scene is explored and the sensor can navigate into the scene. Massios
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and Fisher [1] compute the next best position of a range sensor for object acquis-

ition with orthogonal projection. The sensor position space was two-dimensional:

a sphere at a �xed radius enclosing the object with the sensor always pointing to

the centre. As in our approach they de�ned a quality criterion and used a voxel

map for view reasoning. Garc��a et al. [2] also addressed a similar 2D sensor space,

although discretised in a di�erent way. They used a voting scheme to compute the

next view, maximising the observation of occluded areas, and used a triangular

mesh to model the object.

Reed at al. [3] presented a method to recover object models including the com-

putation of the next view to maximise occluded areas. They computed visibility

volumes from where occluded areas are fully visible, following the method presen-

ted by Tarabanis et al. [4]. But that research did not solve for the best position

of the sensor inside the visibility volumes. In that work Reed et al. assumed a 2D

sensor position space, an enclosing sphere, and computed its intersection with the

viewing volumes. Pito [5] proposed a method for view planning in object model-

ling with 4 degrees of freedom. The sensor position space was a cylinder, and it

could be oriented within a range of pan-tilt angles. He used a voting scheme to

maximise the observation of occluded areas.

In summary, the question that this paper addresses is: Is it possible to

de�ne an e�ective and e�cient algorithm for scanning an environment

such that all surfaces are observed with high quality measurements ?

The results shown have answer the question positively, and we believe this is the

�rst implemented algorithm to do so.

2 Scene representation

Our objective is not to recover a surface model of the scene, which has been

done elsewhere by triangulation of the sensed 3D points [6] (including texture

information to make it more realistic). Instead, we aim at �nding the set of sensor

poses that best acquire the 3D points according to some criteria (explained later).

Our recovered scene model has to be accurate enough to compute these criteria.

We use a voxel map representation. Voxels, volume elements, are small cubes

of a �xed size. The voxel map is a 3D rectangle whose size depends on the available

memory, size of the scene to be modelled, and resolution at which we work. The

voxel map is implemented as a 3D circular bu�er, and it can be placed anywhere

in space, so that if new 3D points are sensed that do not �t in the voxel map, new

space can be allocated for the new area without moving data in memory.

A voxel map representation allows ray tracing by a 3D Bresenham algorithm

[7] using only integer operations. It also allows a straightforward registration of

the new sensed points with the recovered scene [1] (voxel map update) just by

assuming that the voxel size is bigger than the errors that may arise in the sensed

point positions due to inaccurate sensor placement (navigation errors).

In our scene model a voxel consists of a label indicating its type, a surface

normal, and a quality, indicating how accurately this voxel has been sensed so far.

The voxel labels include:

� Unmarked voxel. A voxel that has never been observed by the sensor.
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� Empty voxel. A voxel that has been observed and found to be empty.

� Occupied voxel. A voxel in which 3D sensed points have fallen.

� Occluded voxel. A voxel so far occluded by an occupied voxel.

� Occlusion Plane voxel. A special kind of Occluded voxel adjacent with an

Empty voxel through any of its six faces.

A voxel's surface normal and quality are only de�ned for Occupied voxels.

Normals are estimated at every point in a range image. The voxel surface normal

is the average of the normals of all the range points that have updated this voxel.

The sensed quality of an Occupied voxel is the cosine of the angle formed by the

surface normal and the viewing ray. The voxel quality is the best sensed quality

of the voxel so far.

3 Voxel map update

Every time a new range image is taken the voxel map is updated, incrementing

our knowledge of the scene.

A range image is a matrix [duv ] (u 2 [0::N � 1], v 2 [0::M � 1]) of distances

sensed in the direction ~nuv�� from the optical centre c, (�; �) being the pan-tilt

angles the sensor is oriented. Representing a 3D rotation by Raxis
angle, ~nuv�� are

computed as: 8>>>>><
>>>>>:

�u = �( 1
2
� u

N�1
)

�v = �( 1
2
� v

M�1
)

~a = R~x
�v
(0; 0; 1)0

~nuv00 = R~a
�u
R~x

�v
(0; 1; 0)0

~nuv�� = R
~y
�R

~x
�~nuv00

(1)

where � and � are the horizontal and vertical angular apertures. The 3D co-

ordinates of a sensed point puv are:

puv = c+ duv~nuv�� : (2)

A voxel is identi�ed by its three indices in the voxel map (i; j; k)0. The centre of

voxel (0; 0; 0)0 is placed in space at world co-ordinates (xw; yw; zw)
0 and the voxel

array is aligned with the world co-ordinate axes. A voxel is a cube of side scale, so a

point in 3D space (x; y; z)0 falls inside voxel (RoundScale(x�xw); RoundScale(y�

yw); RoundScale(z � zw))
0, where RoundScale(x) = Round(

x+sgn(x) scale
2

scale
).

The voxel map is updated with the following method:

� Compute the camera position in the voxel map cvoxel = RoundScale(c).

� For every range image point puv compute its voxel co-ordinates pvoxeluv =

RoundScale(puv) using (1{2).

{ Compute the intersection lvoxeluv of the ray c+�~nuv�� with the limits of

the voxel map in voxel co-ordinates.
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{ Do ray tracing from cvoxel to pvoxeluv marking as Empty the voxels that

are not Occupied.

{ Do ray tracing from pvoxeluv to lvoxeluv marking as Occluded the voxels that

are still Unmarked.

{ Mark voxel pvoxeluv as Occupied.

� Traverse the voxel map marking as Occlusion Plane the voxels that are of

type Occluded and have a face touching an Empty voxel.

4 Fitness function

In order to compute the best next position we have set some criteria for the

goodness of a sensor pose, which are formulated as a mathematical function to

maximise. The criteria are de�ned on the scene area that a test position covers, and

are: 1) Providing overlap with previously acquired data for �ne registration of the

data (as wheel slip on the vehicle is likely to introduce dead-reckoning registration

errors). 2) Eliminating occlusion plane areas. 3) Observing new unseen areas.

Let aov be the proportion of overlapping area of the image taken from a certain

camera pose, aop be the proportion of occlusion plane area, and let aus be the

proportion of unseen area, aov; aop; aus 2 [0::1] and aov + aop + aus = 1. The data

for computing these values comes from projecting the current scene model, when

viewed from a viewpoint and direction, onto an internal image plane. The function

to be maximised has been designed with these characteristics:

� A unique maximum at a certain value of aov (we have �xed 40% for this

value) and for aop = aus (thus favouring at the same time the sensing of

occlusion plane and unseen areas).

� Zero at aov = 0, forcing some overlap.

� A �xed value greater than zero at aov = 1, to make possible views with no

occlusion planes or unseen areas. This can occur at late stages of the scene

recovery, when all parts have been observed and new views aim at increasing

the quality of the sensed data.

A simple (polynomial) function that satis�es the above criteria is

farea =
�
5a3ov � 10:5a2ov + 6aov

��
1�

1

2
jaop � ausj

�
: (3)

This function has a maximum of 1.04 at aov = 0:4 and aop = aus, a local

minimum of 0.5 at aov = 1, value 0 at aov = 0, and decreases as aop di�ers from

aus. In the space de�ned by axes (aov ; aop; aus), the domain of farea is the triangle

de�ned by the plane aov + aop + aus = 1 and the conditions aov; aop; aus 2 [0::1].

Fig. 1 shows the domain triangle and the shape of farea.

The area-based evaluation has the advantage that small occluded areas will

tend to be examined more closely, since the overlapping area attempts to be about

40%. This forces the vehicle to approach unobserved areas until they occupy about
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Figure 1: Area-based �tness function, farea on (aov ; aop; aus)

60% of the image. On the other hand, and for the same reason, big occluded areas,

like those hidden by a salient corner, will tend to be imaged from a further distance,

and if new detail appears (in the form of occlusion planes), it will be examined

closer in further views.

We have quali�ed as basic the above area-based criteria. Other criteria can be

represented by factors fi 2 [0::1] which multiply by farea, thus increasing the total

evaluation, f = farea
Q

i(1 + fi). These secondary criteria may include:

� Quality improvement, fquality .

� Structure of the overlapping area, fstructure. The purpose of this factor is

to favour the sensing of areas where the surface has non-degenerate shape,

thus easing the registration.

� Navigation cost, fnavigation, modelling the cost of reaching a new position

and orientation from the current position of the sensor.

From these proposed criteria we have only tested fquality , leaving the other

two to further work. fstructure could be computed from the variance of the surface

normals at the new sensed points. fnavigation should rely on robot path planning,

reasoning about the known obstacles in the scene, the distance to travel, and

trajectory of the robot. We have implicitly introduced a simple navigation factor

in the de�nition of the feasible space when optimising the �tness function, but a

reliable navigation factor should be computed by a navigation module.

For fquality we use the ratio of Occupied voxels that would improve quality

from this view to the total number of Occupied voxels updated, multiplied by the

mean quality improvement. Clearly fquality 2 [0::1]. The total �tness function

becomes then

f = farea(1 + fquality) : (4)

5 Optimisation

The feasible space is related to the physical characteristics of the sensor. If the

sensor is mounted on a mobile base that moves on the 
oor, the mobile base cannot

even move safely unless areas of the 
oor have been scanned and an obstacle-

free path is found. Nevertheless, a navigation reasoning module is not taken

into account in the present work, so we de�ne the feasible space by these simple
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Figure 2: Left : face of an icosahedron. Middle: re�nement. Right : simplex

(tetrahedron) used in search algorithm

constraints: 1) The sensor must lie inside an Empty voxel. 2) The nearestOccupied

voxel is not closer that K � scale (K times the voxel size) so the sensor does not

collide with obstacles. K = 4 has been used.

The search strategy to optimise the �tness function can be one of the following:

1) Exhaustive search. This will �nd a global maximum but it would be extremely

costly due to the �ve degrees of freedom of the problem. 2) Hill climbing methods.

They will end up in a local maximum close to the starting position of the search.

3) Statistical methods: simulated annealing. These would need lots of �tness

function computations, and are not guaranteed to end up in a global maximum.

4) Evolutionary methods: genetic algorithms. It would require an extremely large

number of function computations to maintain a population of test positions.

To choose the search method one has to consider that our goal is to provide

an answer, the next best position, in a reasonable amount of time. Several dozens

of views will be necessary to recover a normal-sized room, so response times of

the order of a minute, at most, are desirable. The �tness function is based on ray

tracing on a subsampled range image used for view prediction, while the full range

image is used for modelling. Sensor sizes may be of about 50-250 thousand points,

and after subsampling the number of points may be still of about two thousand

(64� 32 for example).

We use a mixed method: exhaustive search in the 2D space formed by the

pan-tilt angles, and a hill climbing method in the 3D space of sensor positions.

To perform an exhaustive (coarse) search in the pan-tilt space, we choose the

centres of the 20 faces of an icosahedron as the values to test. These orientations

are evenly distributed around a sphere, and in case there is spare time, a face can

be subdivided as shown in Fig. 2 providing four new faces, which can be further

subdivided to the desired resolution. So, provided the next best position and

orientation of the sensor is worked out at this resolution, the orientation can be

re�ned as desired.

For the hill climbing optimisation we use the N -dimensional simplex method

[8]. The method starts from the current position of the sensor, and �nds a nearby

local maximum. A simplex in 3D space is a tetrahedron (Fig. 2). The vertices of

the initial simplex are set as follows: the �rst vertex is set as the current sensor

position, the other three are set randomly choosing an icosahedron face [1::20] and

a ray within this face. These directions are projected a random distance (within

a range).

A simplex evolves in 3D space changing its shape, size and position, aiming at

high values of the �tness function. This is done by performing re
ections of the

worst point through the opposite face, expansions of a point along the direction of

the opposite face, 1D contractions of the worst point toward the opposite face, and
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3D contractions of all but the best point toward this point. A deeper explanation

of the simplex optimisation algorithm can be found in [8].

The simplex optimisation is stopped when the range of change of the �tness

function among the four vertices of the simplex is below a threshold (0.001 for

example). This will always be reached eventually since the simplex gets smaller as

it contracts toward vertices where the �tness function is better, and at a certain

iteration the whole simplex will be contained inside a unique voxel, so the �tness

of its four vertices will be the same, and the range will be zero.

The combination of the exhaustive search in the pan-tilt space and the simplex

method in position space is done by computing the �tness of all 20 directions (faces

of the icosahedron) at every position tested (a simplex vertex), and keeping the

best evaluation as the �tness for that position.

The termination criterion is aimed at ensuring that the whole scene is re-

covered, and it can be: 1) No more unseen area is covered. 2) No more unseen

area is covered and the quality of every pixel is above a threshold. 3) No more

unseen area is covered and no more quality improvements are achieved. We used

criterion 2.

The covered area and the occlusion plane area can be roughly computed as the

number of voxel faces that touch an empty voxel, times the area of a voxel face.

6 Results

Although the proposed approach does not guarantee the selected best view is

globally the best, which could be computed by exhaustive search in �ve dimensions,

it provides a feasible solution which: 1) is locally a maximum of the �tness function,

2) is near to the previous sensor position, 3) improves quality of the covered area,

and covers occlusion planes and new unseen areas.

To show the goodness of the method, experiments have been carried out us-

ing a simulated range sensor and mobile base. The base is able to move for-

ward/backwards, left/right, and lift the sensor up/down. It can rotate, thus pan-

ning the sensor, besides the sensor can tilt from 0 to 180 degrees. The simulated

sensor navigates in a scene model built with a CAD tool, accepting commands

through a UNIX socket to perform the motion and to take range images. The

range sensor observes 64 � 30 points, with horizontal angular aperture of 60 de-

grees, providing a 2 1
2
D range image. The scene used consisted of a closed room of

5� 3� 3 metres, with three boxes inside, Fig. 3. The voxel size was scale = 10cm

and the voxel map was of 64� 48� 32 voxels.

Two experiments were carried out, one with the quality factor switched o�

fquality = 0, and another taking into account this factor. The experiments were

run till the 5D space to optimise the �tness function was almost 
at (50 views

with the quality factor o� and 200 views with the factor on). The main di�erence

was that in the second experiment the sensor reexamined the walls that had been

scanned by almost-vertical views just at the beginning.

Fig. 4 shows several plots giving information of how the method was working.

These include: Fitness function, which shows that the optimisation method �nds

good poses for the sensor, but declines as the scene is recovered. Number of it-

erations of the optimisation method: the number of function evaluations is this
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Figure 3: Left : original scene and range points. Centre: range image and nor-

mals. Right : positions tested by the simplex during one optimisation cycle. Lines

indicate the best direction with length proportional to their �tness
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Figure 4: Plots showing the scene recovery process versus view number. Top line:

with the quality factor o�. Bottom line: with the quality factor on. From left to

right : number of iterations to locate the next best view. Optimised �tness function

at the next best view. Mean quality of Occupied voxels. Area of Occupied voxels

number multiplied by twenty (number of faces of an icosahedron). Mean qual-

ity of Occupied voxels: in the second experiment quality improves monotonically

after the scene is initially completely observed. Occupied area in m2: this �g-

ure stabilises in both cases after about 50 views, when the whole scene has been

observed.

Fig. 5 shows the recovered scene after a number of views. The Occupied and

Occlusion Plane voxels can be identi�ed as dark and clear cubes. Fig. 3 shows all

the positions tested by the optimisation method in a sample view as the simplex

evolved in the 3D space. The lines start at the position of the vertices (dots) and

have the direction of the best evaluation, with length proportional to the �tness

function.

The test results show that the scene scanning is virtually complete after a

reasonable number of views (50) with or without the quality measure. Additional

scans are needed to obtain the remaining isolated unobserved voxel faces, or to

improve the quality. A drawback of the approach is that when almost the whole

scene is recovered and there just remain few isolated viewpoints, the space is al-
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Figure 5: Left : recovered scene after �rst and second views. Centre: recovered

scene after third view, quality factor o� (up) and on (down). Right : recovered

scene after view 20, quality factor o� (up) and on (down). Occupied voxels are in

dark and Occlusion Plane voxels are in clear. The path followed by the sensor is

pointed out by dashed lines, sensor positions and orientations by solid lines

most 
at regarding the �tness function, and the local hill-climbing method cannot

�nd a good direction to \climb". In this case the simplex evolves randomly un-

til a timeout is signalled. This \tiding-up" phase should be then directed by a

deterministic approach (detecting holes in the scene by morphology analysis and

computing viewpoints for them). But a voxel hole in an area of Occupied voxels

does not mean that the 3D scene model represented by a triangular mesh could

not be realistically built.

The scene used has an exact area of 80:64m2. The minimum number of views

to cover this area, assuming a 40% overlap, and that the sensor stays at 2m from

the surfaces, covering an area of 2(2 tan �
2
)(2 tan �

2
) = 2:5m2 (� = 60deg; tan� =

M
N
tan�;M = 30; N = 64), would be of 81 views. On the other hand, the max-

imum number of views is given by visiting all the voxels inside the room, that is
5�3�3

scale�scale�scale
= 4500. As we can see the number of views taken by the present

approach is quite reasonable.

The time to deduce the next observation position depends on the current scene

complexity, but the experiments reported here took approximately 832 seconds for

the �rst experiment (50 views) and 1252 seconds for the second one (200 views) on

a Pentium processor at 166 MHz. This is approximately 16 seconds per view on

average. The average distance travelled by the sensor from one view to the next

was less than one metre. The storage requirements for the voxel representation

were about 3/4 of a M-byte, which is also low enough for practical use.
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7 Conclusions

We have presented an approach to full 3D scene recovery by a range sensor mounted

on a mobile robot. The recovered scene model is represented by a voxel map at

just enough resolution for computing the criteria to �nd the next best view. This

allows a straightforward registration of new views with the scene model (voxel map

update). During scene model recovery, one could also acquire higher resolution

surface and texture data. This data would not be needed for the best next view

planning process, but could be used for scene modelling.

The next best view is recovered by mixed exhaustive search and hill climbing

optimisation, and the �tness function is based on area proportions of the new

image to be sensed. This means that detailed areas are examined closer. We have

envisaged other criteria that can modify the basic one, aimed at improving the

quality of the sensed data, or at favouring the recovery of high structured parts

to ease the registration, if a realistic recovery of the scene is to be performed by

another task.

We have presented results that show the feasibility of the method. The exper-

iments have been carried out on a simulated sensor and mobile robot navigating

in a CAD scene, with and without the aim of quality improvement of the data.

Recovering our sample scene with a mean quality of 0.9, for example, takes 4 times

the number of views required for recovering it with any data quality. We expect

to perform real-scene experiments in due time.
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