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Abstract

This paper describes work aimed at developing a practical shape-from-shading
process for terrain analysis from radar imagery. The paper commences by
providing an analysis of the radar reflectance properties of terrain structures.
By using ground truth elevation data, we provide an empirical study of the
radar reflectance characteristics for large-scale terrain features. The main
conclusion of this study are twofold. Firstly, we show that radar has a strong
backscatter component. Secondly, we show that the radar noise has a tail
which extends to large reflectance values. Based on these observations we
develop a semi-empirical shape-from-shading algorithm. We illustrate the
effectiveness of the algorithm in extracting surface orientation information
from radar images of a mountainous area of terrain in North Wales.

1 Introduction

Radar shape-from-shading provides an important route to automatic terrain analysis [4].
The process aims to use radar images to recover surface topography via an analysis of
variations in scattering intensity. Historically, the method has attempted to borrow and
adapt ideas developed for recovering local surface orientation using photometric shape-
from-shading. Here it is well known that the observed surface luminosity depends on a
number of factors including the reflectance, the light source direction and the viewing
angle. More formally, photometric shape from shading is posed as the recovery of the
needle map from the image irradiance equation. In general, this problem is ill-posed since
at each image location two components of surface normal must be recovered from a single
luminance value. For this reason a number of additional constraints must be applied in
order to solve for the surface shape. The most common of these is that the direction of the
local surface normals vary smoothly across the recovered surface. In addition, the image
irradiance equation is a simplistic physical model since it assumes that the reflectance
function is known (usually Lambertian) and is constant across the surface. Moreover, the
direction of the light source must be known in advance.

Horn[1] was the first to address the shape from shading problem using a characteristic
strip method. The method is notoriously sensitive to image noise. To limit the problems
of noise, Ikeuchi and Horn[2] search for solutions of the image irradiance equation in
which the surface normals vary smoothly. Their method is typical of a large group of
regularisation methods which involve the global optimisation of a criterion which includes
a ’data closeness’ term and a “penalty term’ which penalises non-smooth solutions. Such
approaches are robust to a certain degree of noise. However, a careful choice of smoothing
kernel must be made[3] to prevent over-smoothing.
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The extension of these ideas to the radar domain is by no means straightforward. The
main obstacles are as follows. Firstly, and as demonstrated by Frankot and Chellappa [4]
and many others [7, 5], the standard Lambertian model is a poor approximation for radar
reflectance. The physical reason for this is that radar reflectance is better modelled by
multiple scattering centres. As a result the reflectance depends strongly on the material
composition of the object under study and the scattering angle [8]. Secondly, the levels of
noise associated with radar data are usually much higher than those at visible wavelengths.
This is mainly due to speckle effects in the image formation process. Moreover, the noise
in some radar systems is far from Gaussian. For instance. some studies have found
multiplicative noise in images [12, 13]. Thirdly, the relatively large wavelength of radar
means that shading analysis is only practical for surfaces of large physical dimensions.
For shading variations to become apparent the surface must be 10’s to 100’s of metres in
size. This limits the usefulness of radar shape-from-shading to remotely sensed terrain.
Finally, the reflectance characteristics are very different at radar wavelengths.

However, despite these difficulties there are features of radar which simplify certain
aspects of shading analysis. For instance, since the radar itself illuminates the scene, we
always have accurate knowledge of the direction of illumination. Moreover, the viewing
angle is identical to the illumination angle. This considerably simplifies the reflectance
model. Unfortunately, in spotlight synthetic aperture radar the illumination direction
varies to some extent during image formation, leading to some blurring of the surface
reflectance.

We have recently embarked on a programme of work aimed at developing improved
methods for radar terrain analysis. This paper reports the first stages of the work and is
concerned with developing a practical radar scattering model. The approach adopted is an
empirical one. Using a digital elevation map, we investigate the scattering characteristics
of the radar returns using data with known ground truth. The resulting scattering model
is found to give good results when combined with the relatively simple Ikeuchi and Horn
shape-from-shading scheme [2].

The outline of this paper is as follows. In section 2 we present the radar data and
ground truth information used in this study. In section 3 we discuss the reflectance func-
tions of surfaces illuminated by radar. In section 4, we analyse the noise properties of the
images. Finally in section 5 we apply a shape from shading algorithm to recover surface
normals for a remotely sensed area of terrain, and compare to a ground truth elevation
map for the same region.

2 Radar Data

The data presented in this study was collected using a C-band SAR radar which has a
frequency of 5.7GHz, a bandwidth of 90MHz and peak power of 9.4 W. The imagery
was taken at a nominal antenna depression angle of 20 degrees. This radar collects dual-
antenna images for use with SAR interferometry. From this data-set it is possible to
directly reconstruct a DEM (digital elevation map). It is this DEM which provides the
ground truth for our shape-from-shading study. The SAR image and the DEM used in our
study are shown in Figure 1.

The two images have been processed to 2m resolution in azimuth and are sampled in
the digital image plane at 1.905m in azimuth and 1.499m in range. They have a pixel reso-
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(a) SAR image.

(b) Digital elevation map.

Figure 1: Data used in the study.

Iution of 1850 by 1320. Each image pixel is represented by a complex number containing
amplitude and phase information. Radar reflectance is represented on a logarithmic scale.
In the process of deriving the associated height map, the imagery has been averaged by a
factor of 4 in both azimuth and range, to alleviate noise problems. As a result, the reduced
size of the DEM data array is 462 by 330 pixels. The sampling in the DEM is, therefore,
7.62m in azimuth by 5.996m in range.

3 Reflectance model

Standard shape-from-shading methods assume a Lambertian reflectance model which ap-
plies to matte surfaces. As a result, the observed intensity is independent of viewing angle
and depends only on the angle of illumination. If n is the unit surface normal and s is
the unit vector in the light-source direction, then the reflectance function R(n.s) = n.s.
In other words, the reflected intensity is uniformly distributed over the viewing angle.
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However, this model is unlikely to be useful for representing the angular dependence of
radar reflectance. Study of the literature reveals very little discussion of such reflectance
models. One of the reasons for this is that a typical angular reflectance pattern for objects
smaller than 10’s of metres appears to be semi-random. The angular dependence is only
likely to be stable for very large objects, such as the terrain features we are studying here.

Even so, most of the work on radar reflectance has focused more on identifying ter-
rain classes from their radar reflectance patterns, rather than establishing an analogue of
the Lambertian model for radar shape-from-shading. Such reflectance patterns are ideal
for locating specific terrain types, since there is a high degree of inter-class variability
between different surfaces. Unfortunately, this property poses serious obstacles to devel-
oping practical radar shape-from-shading schemes for terrain analysis. The reason for
this is that we must identify the terrain class and select the appropriate reflectance model
prior to performing shading analysis to recover surface normal information. However,
those studies which have been performed reveal a very non-linear pattern to the angular
dependence of radar reflectance [8]. It should be noted that for radar data incidence angle
and viewing angle are identical due to the geometry of the radar image formation process.
In other words, we do not need to separately model the viewing angle dependance of the
reflectance function. This clearly simplifies the modelling process.

Equipped with our ground-truth DEM and knowledge of the radar illumination direc-
tion, we can analyse the reflectance characteristics of our sample SAR data in an empirical
manner. The idea is to use the distribution of observed radar intensity with incidence angle
to estimate the reflectance function. The procedure is as follows: Firstly we differentiate
the DEM in the x- and y-directions. We then use the resulting directional gradients to
reconstruct ground-truth surface normals for the scene. Since we know the illumination
direction, it is a simple matter to calculate the angle between illumination direction and
the surface normal. Using the angles computed in this way we can then estimate the
angular reflectance distribution.

Figure 2a shows the result of applying this technique to one of our SAR images. The
overall shape of this function is very similar to that found by other studies [8]. We will
denote this reflectance distribution as R(n - s) where n and s are unit surface normal and
light direction vectors respectively.

The shape of the reflectance function deserves further comment. Firstly, it is strongly
peaked close to n.s = 1. In other words the peaking is in the direction of the illumination
and the strongest amplitudes are associated with backscatter. This is in marked contrast
to Lambertian reflectance where the angular distribution of amplitudes is uniform with
respect to the illumination direction. Secondly, the reflectance curve is relatively flat for
intermediate and small values of n.s. As a result the variation of radar amplitude at large
angles with the illumination direction is relatively slow. This will limit our capacity to
detect shading variations associated with highly inclined surfaces.

This analysis assumes that the terrain under study is isotropically reflecting and all of a
homogeneous terrain class. We can examine the assumption of isotropy more critically by
looking at the dependence of reflectivity on the pose of the surface. We examine locations
where the surface has a particular orientation with respect to the radar direction. We can
then plot the relationship between the angle of the surface normal (= tan — 1(y/x) for
a normal of direction (x,y, z)”) and the reflectance values. Figure 2b shows that there is
some angular dependence; the terrain under study here is not completely isotropic.
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Radar Reflectance

Angular Dependence of Reflection
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Figure 2: Empirical distributions.
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4 Noise Properties of Radar data

Speckle noise is a significant problem in most radar images. This noise derives from
the occurrence of multiple reflecting centres in each radar pixel. The magnitude of this
noise is related to the roughness of the surface under study. Some studies, for example
those of Zito [12] have suggested that such noise follows a Rayleigh distribution. This
distribution follows when the multiple targets produce constant amplitude and random
phase responses. However, if the pixels are re-sampled in such a way as to correlate
neighbouring pixel sites, this distribution may be modified. For example, if the pixels
are re-sampled in complex space (i.e. with a representation x + iy for image pixels),
the distribution of amplitude A is modified to a product of Rayleigh and Bessel-function
distribution [13]. If I is the zero-order modified Bessel function, then the probability
distribution for the radar amplitude is given by

A? A?

p(A) = KAexp [—W}[o {;] (1)
where K is a constant of normalisation, v is the modal radar amplitude and o2 is the
variance parameter of the correlated noise component.

To demonstrate that the product of Rayleigh and Bessel functions accurately models
the distribution of noise we have conducted the following experiment. Commencing from
the DEM, we have computed ground-truth surface normals. Using the known radar illumi-
nation direction s we have used the ground-truth normals to compute the resulting values
of the inner product n.s at each pixel location. The radar reflectance function R(n.s)
returns the predicted mean-value v for the radar amplitude A. We have histogrammed
the observed radar amplitudes for all pixels that are predicted to to have a given mean-
amplitude v according to the reflectance function. Figure 2c shows the resulting histogram
for pixels with predicted reflectance value R(n.s) = 40. The plot shows the histogram
bin-contents as a solid curve with square markers. Also shown in the plot, as a dotted
curve, is the pure Rayleigh distribution with mode v = 40. This curve fails to predict the
high reflectance tail of the radar amplitude histogram. By contrast, the Rayleigh-Bessel
distribution, which is shown as a dashed curve, provides a significantly more accurate
description of the amplitude histogram. In other words, the histogram strongly indicates
that the noise process is Rayleigh-Bessel and that the components of the radar response
are partially correlated.

5 Shape from shading

In this section we use the reflectance model developed earlier in this paper to model the
brightness process in shape-from-shading.

5.1 Shape-From-Shading Algorithm

To perform shape-from-shading on our radar data, we adopt the variational framework of
Horn and Brooks [9]. Whilst there are other, more recent and in some cases more elegant,
approaches to the problem [10, 11], the Horn and Brooks formulation offers a technique
which we can easily adapt to suit the needs of our radar shape-from-shading application.
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The original Horn and Brooks error functional is defined to be

E=//{(I@:,y)—n-s)2+x(|%|2+|g—‘y‘|2) F () psdy @)

where p and A are Lagrange multipliers. This energy function can be minimised applying
variational calculus and solving the Euler equation:

(I(z,y,) —n-s)s+ AV?n — un =0 3)

For the purposes of our radar shape-from-shading application, we make two modifica-
tions to the Horn and Brooks algorithm. Firstly, and most importantly, Equation 3 adopts
a Lambertian model of surface reflectance. As we have seen, this model is not appropri-
ate for radar reflectance. Consequently, we adopt a more general reflectance model. The
associated regularised energy function is

ER://{<I(:c,y)—R(n-s)>2+/\<|g—zlz+|g—z|2>+M(|n|2)}d$dy @

The corresponding Euler equation is

(Ia,y) ~ Rn-$) 20 4 X9%n — pm = 0 )

Our second departure from the standard Horn and Brooks algorithm is to modify the
means by which the Laplacian V?n is estimated. Specifically, the Laplacian is estimated
using the following differencing mask applied to the full 3x3 neighbourhood of each
image pixel

L (1 41
c\1 4 1

This term of the Euler equation represents a regularizer which imposes a smoothness
constraint on the solution. This constraint is particularly important when dealing with
noisy data. There are other choices of smoothness regularizer. For instance Worthington
and Hancock [3] use robust error kernels to deal with noise and outliers.

The Euler equation is solved numerically using a quasi-Newton method. In practice,
this involves computing the derivatives of the reflectance function R off-line and storing
them in a lookup table. The update equation for updating the surface normal between
iterative epochs k and k + 1 at the pixel location (z, y) is

OR(nk  s)

nftl =k o U{I(x,y) - R(n;y.s)} -

(N

where ﬁéy is the weighted average of the neighbouring surface normals obtained using

the Laplacian mask and 7 is the step-size for the quasi-Newton method.
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5.2 Boundary Conditions

In order to solve the Euler equation for shape-from-shading, we require one additional
ingredient. Boundary conditions are required to produce a unique solution to the Euler
equation. These boundary conditions are provided by points in the image at which the
directions of the surface normals are already known. In typical shape from shading prob-
lems, such points are provided by either occluding boundaries, where the normals lie in
the image plane, or by critical points, where the surface normals are perpendicular to the
image plane. In terrain data there are no occluding boundaries. We can however, use some
unique topographic terrain features to provide the necessary constrained surface normals.

o Ridge lines: The radar data being studied covers a mountainous region in Wales.
In fact the main topographic structure is Penn-y-Gynt. One of the useful features
in such terrain are crest-lines or ridges. These are contours connecting local height
maxima and are characterised by zero Gaussian curvature and non-zero mean cur-
vature. In other words, they will be highly curved in one direction and relatively
flat in the perpendicular direction. As a result crest-lines present a unique inten-
sity profile in the shading map. Such features are associated with rapid changes in
shading. In addition, the local surface at the apex of a ridge-line is parallel to the
image plane and provides us with points of known surface orientation. The sharp
intensity changes associated with the ridge profileq can be detected by searching
for zero crossings of the Laplacian.

o Water: The images here have lakes, ponds and other areas of water in them. These
areas have very low radar response compared to other terrain types are hence are
easily identified. Since the surface of water is flat and horizontal, the associated
surface normals are perpendicular to the the image plane.

With the constrained surface normals provided by crest-lines and areas of water, the Euler
equation may be solved by a number of methods. Here we use numerical iteration based
on finite differences. The method requires sufficient iterations to spread information from
the points of known surface orientation to the remaining points in the image. In practice
some 200-300 iterations are required.

6 Results

Figure 3a shows the x and y components of the surface normals resulting from applying
the shape-from shading algorithm to the SAR image. For comparison, the ground truth
values are shown in Figure 3b.

Examination of these figures shows good agreement between the normal maps. How-
ever, there are a number of artifacts worth mentioning. The experimental normal map is
clearly over-smoothed when compared with the ground-truth data. This highlights the dif-
ficulty of controlling both the pre-smoothing step and the regularization term of the opti-
misation approach to shape from shading. One major criticism of the variational approach
is that it tends to over-smooth the resulting normal map. There may be ways of overcom-
ing this limitation by applying a more sophisticated model of needle-map smoothness
[3, 10, 11].
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Y-Component of ground-truth normals

(a) Shape-from-shading (b) Elevation map.

Figure 3: Surface normals.

Another observation from the data is that the y-direction normals appear to be more
accurate than their x-direction counterparts. This is an artefact of the illumination di-
rection, which is aligned closely with the vertical axis of the image. The problem of
low accuracy along the illumination direction is something which plagues all shape-from-
shading techniques.

7 Discussion

In this paper we have examined the noise properties of SAR images of terrain and estab-
lished a Rayleigh-Bessel model for noise in the raw radar reflectance distribution. Em-
pirical study of the reflectance function for the data reveals that we must adopt a non-
Lambertian model for surface reflectance. The experimental reflectance map also reveals
that the response is relatively flat at intermediate angles, which may lead to difficulties
in detecting changes in surface normal direction at these orientations. Finally, we have
established the feasibility of shape-from-shading in radar terrain images by applying a
simple modification of the Horn and Brooks [9] algorithm. The resulting surface normal
components are in good agreement with ground-truth normal information.

Our future plans revolve around incorporating the radar reflectance model developed
in this paper into a more elaborate shape-from-shading scheme. One candidate is the
robust regularisation framework recently reported by Worthington and Hancock [3]. Here
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the simple averaging of the neighbourhood surface normals is replaced by a robust error
kernel which weights against outliers. This new needle-map consistency process has been
demonstrated to offer advantages in terms of improving the recovery of sharp curvature
detail. In the domain of terrain analysis, it should facilitate the recovery of ravines and
drainage channels.
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