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Abstract

In this paper a new colour space for content based image retrieval is

presented, which is based upon psychophysical research into human

perception. It provides both the ability to measure similarity and de-

termine dissimilarity, using fuzzy logic and psychologically based set

theoretic similarity measurement. These properties are shown to be

equal or superior to conventional colour spaces. Example applications

are also demonstrated.

1 Introduction

Content based image retrieval (CBIR) is the retrieval of images that �t a user

de�ned query utilising the visual content of the images in the database. This is

done by isolating and extracting salient features from all the images within the

database. When a query is made these features are searched to �nd the closest

matches to the features de�ned by the user.

In smaller databases it is feasible to annotate the images with relevant keywords

entered by hand, permitting retrieval on the same basis as a library catalogue.

However, in large databases annotation becomes highly impractical and even if it

were it could not possibly detail all of the features within the image, or as daVinci

eloquently said `The poet ranks far below the painter in the representation of

visible things'. Therefore it is clear features must be extracted from the images

automatically.

Colour is by far the most used feature for image retrieval. All of the main CBIR

systems, such as QBIC [3], Virage and VisualSEEk [10] have colour as their main

feature fromwhich other features are subsequently derived. Given the fundamental

level at which colour is involved in the retrieval process, it is obviously important

to quantify similarity between colours.

1.1 Colour Space

The existence of the colour space enables the description of a colour by a set of

co-ordinates within that space, the most commonly known of which is the Red-

Green-Blue (RGB) space used in monitors and the majority of image �le formats.
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Thus having de�ned a colour as a point in n-dimensional space (n=3 for RGB),

common practice is to assume that colour similarity is inversely proportional to

a distance metric in that space. However, this assumption proves inappropri-

ate, particularly for the more commonl y cited colour spaces (RGB etc.), since

equal distances in colour space rarely match perceived equivalence in similarity.

Several colour spaces have thus been proposed, such as CIE L*a*b, which at-

tempt to achieve the desirable property of 'perceptual linerarity'. Although the

colour spaces proposed by the CIE almost meet the universally accepted Munsell

standard, it is acknowledged that 'perceptual linearity' only occurs over small dis-

tances. Yet, because there is no alternative, large distances are commonly used to

represent colour dissimilarity.

However, as Ewald Hering observed in the 1800's, human perception is oppo-

nent in nature; white vs. black, red vs. green and yellow vs. blue. As such there

is no similarity between colours and their opponents, the colour 'reddish green'

does not, and cannot, exist. As such there is no �nite measurement of the 'per-

ceptual distance' from red to green, or yellow to blue as they have no similarity

what-so-ever.

The presence of these seemingly in�nite distances would suggest that distances

in colour space cannot be treated in a simple, Euclidean manner. The results of

Wuergeret al. [14] supports this.

1.2 Colour Labels

Wertheimer [13] suggested that amoung perceptual stim uli there are 'ideal types'

that are anchoring points for perception. Rosch [7] proposed that in certain per-

ceptual domains, such as colour, salient prototypes develop nonarbitrarily. Indeed

this was found to be so by Berlin and Kay [1] who, in their pioneering anthropo-

logical study, found that colour space was partitioned into a maximum of eleven

basic colour categories of which three were achromatic (black, white, grey) and

eight chromatic (red, green, yellow, blue,purple, orange, pink and brown). This

partitioning was a universal tendancy to group colour around speci�c focal regions.

However, despite the considerable amount of research generated by this �nding,

little was done in locating the basic colour categories in the colour spaces repre-

sented by speci�c colour order systems. There are two notable exceptions to this.

The original work by Boynton et al. [2] identi�ed the focal regions, centroids and

consensus colours in the OSA colour space. This work was extended by Sturges

et al. [11] into the more widely accepted Munsell colour space using more subjects

and colour samples.

The afore mentioned research has shown that, perceptually, colour is a com-

bination of eleven basic categories and can be described either as one of these

basic colours or as a combination thereof. This ability to describe what a colour

is means that it can also say what it isn't .

Berlin and Kay's eleven basic colours provide a basis for a perceptually justi�ed

colour space, which could be utilised in image retrieval
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Figure 1: Location of conensus samples and focal colours on a two dimensional

representation of the Munsell space as identi�ed by Sturges et al..

1.3 The Requireme nts of CBIR

The main purpose of content based image retrieval is to match the human percep-

tion: in the case of query-by-example, to �nd images that look like the example

image the human user has chosen. However, when query-by-example is not pos-

sible the human needs to be able to describe their requirements to the retrieval

system. In the case of colour this could be by an example colour, but it would be

more convenient to give a description of a colour in a way easy for a human, such as

an 'Orange - Red' or 'Blue'. Describing colour using the labelling found in human

psychology by Berlin and Kay within a CBIR system has numerous advantages.

It provides a perceptually salient, and low dimensional, method of segmen ting a

colour space for the purposes of generating such features as histograms, and pro-

vides an automatic annotation of colours for text based retrievals. An invaluable

feature in database retrieval is the ability to discard potential retrievals that do

not match the user description, which clearly can be done by labelling, but not by

using a distance metric in a colour space, since that forces the entire database to

be ranked in order of distance.

In this paper the Fuzzy Colour Category Map is presented and described and

is shown to possess all of the above properties.

2 Colour Consensus Areas

Sturges et al. [11] identi�ed consensus areas, groups of colours that were consis-

tently labelled the same every time they were viewed by the test subjects, and

details them in the Munsell colour space. These areas, shown in Figure 1, can be

considered absolutely one colour without any hint of another colour present. It
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should be noted that these areas are far from uniform in size or shape and that

the boundaries are not equidistant from the focal points.

2.1 Munsell

The Munsell colour space is almost univ ersally accepted as the standard, per-

ceptually linear and uniform colour space to which others aspire. It is polar in

nature, much like the more well known HSV, and has three dimensions; Hue (angle

in the colour wheel), Value (luminance) and Chroma (strength of colour). How-

ever, unlike HSV, there is no simple transform for obtaining Munsell from R GB

data. In order to achieve this the authors gamma corrected the RGB values to

account for the non-linearity of the monitor used and transformed the result to

the CIE standard xyY colour space. The Munsell Renotations were then obtained

by interpolating from the data of Newhall, Nickerson and Judd [6].

2.2 Segmen tation

It can be seen in Figure 1 that there is space between the consensus areas where the

colour is not clearly labelled. Previously, the authors segmented the colour space

based on which consensus label was closest [9] and this was shown be successful in

the generation of a histogram as a feature for image retrieval. However, while this

allows for crisp colour descriptions such as 'Blue' and 'White' it does not allo w

for ones like 'Greenish Blue'. In essence it is too crisp, what is needed is some

generalization. However, this generalization must also match human perception.

3 Fuzzy Colour Categories

The space between the consensus areas are neither one basic colour or another:

they are a combination of those near it. It can be said that each point has a given

membership in a given basic colour based on its distance from the basic colours

area. To specify this membership the Fuzzy C-Means algorithm was chosen.

3.1 Fuzzy C-Means

It is proposed that eleven fuzzy patches, one for each basic colour, is applied to

a colour space to represent the eleven basic colours identi�ed by Berlin and Kay.

Each and every point within the colour space then has a given membership in each

of the patches representing how similar it is to the basic colour the patch represents.

So a colour which is equally green and yellow would have 50%membership in green

and 50% in yellow.

In this paper the authors use the Fuzzy C-Means algorithm to create these

fuzzy patches. There are two functions in Fuzzy C-Means which de�ne the fuzzy

patches, one that de�nes the 'prototypes', the centre of the fuzzy patches, and

another that de�nes any given point's membership to any given patch based on

it's distance from the patch's prototype. It is clear that the consensus areas de�ned

by Sturges can be said to be the prototypes of the fuzzy patches of the human
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Figure 2: Psychophysical results for the generation of the FCCM. (a) Percentage of

colour sample labels calculated by distance from consensus areas when compared

with human de�ned ground truth. (b) Correlation between generated confusion

matrix and Sturges' confusion matrix by varying the m paramater.

colour visual system. Thus the membership of any given point in the colour space

to any given patch is de�ned as in Equation 1

�Ci (x) =
1

Pk

j=1(
kx�vik2

kx�vjk2
)

1

m�1

1 � i � k; x 2 X (1)

where x is a point in the colour space and vi is the location of the ith prototype

and k is the number of patches. The parameterm is a weight that determines the

membership of partial members of a patch.

3.2 Hue vs Value

To calculate the membership function it must be possible to calculate the distance

from a the prototypes (consensus areas). The Munsell Renotation System implic-

itly de�nes the Hue dimension to be ten times more signi�can t than the Value

as Hue ranges from 1 to 100, Value 0 to 10. While this ma ybe true over short

distances, for the purposes of the fuzzy patches this is not necessarily so.

To determine the correct ratio a set of 1400 tiles representing all the colours in

the Value range of 2 to 8.5 in steps of 0.5 and Hue of 1 to 100 in unit steps were

taken. The chroma of each was the maximum attainable for each Hue - Value

combination for the monitor. Values below 2 and above 8.5 were deemed too pale

for the colour to be clearly seen on a monitor. This set was then presented to 9

individuals who were asked which of the eight chromatic basic colours they would

label each sample. They were also given the don't know option. The mode, or

most common response, for eac h colour was taken to be the ground truth of the

label of that colour. If this resulted in a don't know then that sample was ignored

for the purposes of calculating the performance of each of the distance ratios.

This was then compared to the label predicted by the relative distance from

the edges of the consensus areas using a range of di�erent distance ratios. The

area/prototype to which the colour is the closest is de�ned as its label. The
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Figure 3: Maxim um mem bership at all points in Munsell colour space.

percentage of correct calculated labels when compared with the ground truth is

shown in Figure 2a. As can be seen it peaks at a Hue/Value ratio of 3.6.

3.3 Confusion and En tropy

Sturges [11] de�nes a confusion matrix identifying the number of times individuals

were confused as to which of two basic colours a given sample most resem bled.

This matrix is used here to calculate the paramater m in Equation 1 which de�nes

the distance 'squashing' property of the membership function. A value of 1 results

in a step response which results in a point having 100% membership in the cluster

with the nearest prototype. An m of 3 e�ectively results in a linear interpolation

between prototypes.

The confusion between two fuzzy patches is de�ned in this paper as the fuzzy

entropy of the two patches. Mathematically this is de�ned [5] as the ratio between

the sizes of the underlap and overlap of the fuzzy set. Thus if A is the intersection

of two fuzzy sets then the entropy is given by Equation 2.

FuzzyEntropyfAg =
FuzzyCardfA\Acg

FuzzyCardfA[Acg
=
L
0(A;Anear)

L1(A;Afar)
(2)

The Minkowski distancing metrics used were found to represent the colour

confusability well.

For a range of values of m the fuzzy entropy matrix, as de�ned in Equation 2,

was compared with the confusion matrix of chromatic colours found by Sturges by

calculating the correlation between the generated confusion matrix and Sturges'

confusion matrix. From the results shown in 2 it can be seen the maximum corre-

lation occurs at m = 1:7.

The resulting fuzzy patches in the Munsell colour space can be seen in Figure 3.

4 Similarit y Measurement

Numerous perceptual similarity metrics have been proposed, including distance,

set theoretic etc. and a comparison of these was made by Jain et al [4]. Tver-

sky [12] proposed a new method for the measuremen t of similarity which did not
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use any distances, but relied on the presence and/or absence of features in the

determination of similarity. This similarity metric allows the triangle inequality

to exist and for objects to be completely dissimilar, as is found in perception.

However, the features in Tversky's model were binary. Santini [8] extended this

to the Fuzzy Feature Contrast (FCC) model and de�ned similarity as shown in

Equation 3

S(�;  ) =

pX

i=1

minf�i(�); �i( )g

��

pX

i=1

maxf�i(�)� �i( ); 0)g

��

pX

i=1

maxf�i( ) � �i(�); 0)g (3)

Due to its obvious perceptual foundation this is the method utilised for simi-

larity using the Fuzzy Colour Category Map.

5 Evaluation

To examine the performance to the Fuzzy Colour Category Map for colour sim-

ilarity and discrimination, a test was performed much like the one performed by

Wuergeret al. [14]. The test involved 600 sets of three randomly chosen, but dif-

ferent, colours shown to 9 individuals. The colours were presented in a row and the

subjects were asked to identify which of the left and right colours were the most

similar to the middle one. They were also given the option of both being equally

similar and neither being similar. The results from these three tests were then

correlated, and consistent responses were used in the compilation of the results.

5.1 Colour Similarit y

The percentage of the colours that the both humans and the colour spaces found

to be similar are shown in Figure 4a. The FCC parameters � and � were set to 0,

making the similarity metric e�ectively the intersection of the fuzzy sets. In the

cases where the FCCM gave a similarity of 1 for both colours in question (i.e. they

were all in the same consensus area) the Munsell (HVC) colour space was used to

measure similarity.

5.2 Colour Discrimination

Figure 4b shows the performance for each colour space separating similar from

dissimilar colours, as de�ned by the human tests. For each of the colour spaces

the discrimination point was set at the optimal distance to give the maximum

performance.
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Figure 4: Similarity (a) and discrimination (b) performance of colour spaces when

compared with human choices.

5.3 Discussion

FCCM is comparable to the other colour spaces in determining the most similar

colour in the test. Upon examining the sets of colours that were incorrectly eval-

uated it was found that, with rare exceptions, the colours involved were blue and

purple. The human results were indicating that what Sturges de�ned as consensus

blues were similar to consensus purples. These colours, however, were always near

the edge of the consensus area.

As predicted the FCCM was superior at discrimination to the other colour

spaces using Euclidean distance as a dissimilarity measure. Examining the dis-

tribution of the similar/dissimilar colour distances shown in Figure 5 where it is

clear that the performance of FCCM is much less dependant on the position of

the thresholding boundary than even the best of the distance metrics.

The slight rise in FCCM de�ned dissimilar but h umanly de�ned similar colours

was again due to the purple-blue similarity mentioned above.

Thus it is clear that the FCCM performs comparably as a colour similarit y

measure whilst providing the ability to identify dissimilar images, which is of

considerable use in database retrieval.

The main 
aw has been seen to be the apparent perceptual similarity of purple

and blues. Future work may be to examine the consensus areas of blues and purple

with the view to revising them.

5.4 Example Applications

The FCCM is designed for use in the �eld of CBIR. Figure 6a demonstrates a

query in the Pi
RR
aRIo 2 image retrieval system using FCCM colour labelling. The

query is for 4 objects, one purple, one yellow, one pink and one red with the loose

structural framework of the purple being to the right of the pink and the red below

the yellow. The successful retrieval is shown in Figure 6b with the matching areas

outlined.

Figure 7 demonstrates an alternative application of image segmentation/feature

extraction. Using Tversky's measure and FCCM, the mean similarit y of each pixel

and its immediate neighbours is shown. Uniform areas have a high similaritywhere

as edges have a low local neighbourhood similarity.
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Figure 5: Histograms of the similarity/distance of human de�ned similar (shown

in white) and dissimilar (shown in black) colours of (a) FCCM and (b) L*a*b.

6 Conclusion

In this paper the Fuzzy Colour Category Map has been presented. Based on

psychopysical research it demonstrated the shortcomings of conventional colour

spaces in the application of content based image retrieval, and shows that the

FCCM ful�lls the requiremen ts that CBIR has of a colour space.

The FCCM is shown to be a versatile and powerful colour space with ap-

plications in colour similarity, colour feature representation and image feature

extraction.
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