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Abstract

In this paper, we discuss matching of diffusion tensor (DT) MRIs of the
human brain. Issues concerned with matching and transforming these
complex images are discussed. A number of similarity measures are
proposed, based on indices derived from the DT, the DT itself and the DT
deviatoric. Each measure is used to drive an elastic matching algorithm
applied to the task of registration of 3D images of the human brain. The
performance of the various similarity measures is compared empirically by
use of several quality of match measures computed over a pair of matched
images. Results indicate that the best matches are obtained from a Euclidean
difference measure using the full DT.

1 Introduction

Diffusion tensor (DT) imaging is a recent innovation in magnetic resonance imaging
(MRI), [1]. In DT imaging, the measurement acquired at each voxel in an image
volume is a symmetric second order tensor, which describes the local water diffusion
properties of the material being imaged. The DT may be thought of as a trivariate
Gaussian distribution on the position of a water molecule, initially at the centre of a
voxel, after some fixed time. It is represented by a symmetric 3x3 matrix and thus has
6 independent components.

DT imaging of the brain has provoked particular interest because of the added
insight it provides into the structure of white matter regions. Neuronal axons form the
connections between different cells in the brain. These axons are fibrous structures in
which water is free to diffuse along the fibre, but diffusion in perpendicular directions
is restricted by the cell wall. DT measurements taken from white matter regions, where
large numbers of axons are bundled together, thus tend to exhibit high anisotropy and
the principal direction (PD) of the DT points along the axes of the bundled fibres. By
associating neighbouring voxels according to the PD of their DTs, pathways within the
brain can be traced and mapped, see for example [2], although the resolution at which
these images can currently be obtained is such that only major pathways can be
extracted reliably. There are an increasing number of clinical applications of DT
imaging, for example, the analysis of stroke and multiple sclerosis, [3].

Visualisation of tensor fields, such as a 3D DT image, is an on going subject for
research. In practice derived indices are used to express the information contained

93

BMVC 1999 doi:10.5244/C.13.10



BMVC99

within the DT. The trace, the anisotropy and the PD are the most important of these.
The trace image is proportional to the trace of the DT matrix, which is a measure of
the total amount of diffusion at a point. Diffusion anisotropy is a measure of
directionality of the diffusion — it is high if the amount of diffusion is weighted in one
particular direction. A review of measures of anisotropy can be found in [4], where one
particular measure — the lattice anisotropy (see section 3) was found to be the most
robust. Perhaps the most interesting index obtained from DT images is the PD, which
is the major eigenvector of the DT at each point. The information provided by the PD
is entirely complementary to standard MRI data and gives structure to regions that
appear homogeneous in standard imagery. Figure 1 shows PD (left), anisotropy (top
right) and trace (bottom right) images from one slice of a DT image of a human brain.
The PD is shown only in anisotropic regions where it is meaningful; lighter lines
indicate that the PD is more out of the plane of the image. Strong directional structure
can be observed in regions that appear homogeneous in the anisotropy image.

Figure 1 Images derived from a slice of a DT image. Left: principal DT
eigenvector projected into the xy-plane - lighter lines indicate greater z-
component. No line is drawn at points where the anisotropy falls below a certain
threshold. Top right: lattice anisotropy image. Bottom right: DT trace image.

Here we are concerned with registration of DT images of the human brain. The
multi-resolution elastic matching algorithm, described in detail elsewhere, [5-7], is
adapted for use with this new data type. There are two issues of concern when
matching DT images. Firstly, a pointwise similarity measure is required to drive the
match. Secondly, the effect of image transformations on the DT values at each voxel
must be considered. Each DT has intrinsic orientation with respect to the surrounding
anatomical structure of the image. We must ensure that the orientation remains
consistent with patient anatomy when transformations of the image are made. In this
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paper, we are mainly concerned with measures of similarity. Reorientation of the DTs
will be discussed briefly, but is addressed more fully elsewhere, [8].

Registration of 3D brain images can greatly simplify clinical studies into the
variation of properties of the brain over large populations. Motivation for this work lies
initially in assisting studies into the variation of anisotropy and other diffusion related
properties, see for example [9]. However, we further hope that the added structural
information in DT images can improve the general standard of matches that can be
computed between the images of brains from different patients. A long term goal is to
use high quality matches computed using DT data combined with more standard
structural imagery, such as T1 or T2-weighted images, to generate statistical models of
the variation in brain layout over population groups. Such a model could be used to
constrain matches computed when only less descriptive data is available.

In the next section a brief description of the matching algorithm is given with some
discussion of its application to this new data type. In section 3 a number of possible
similarity measures for use with DT data are described. In order to decide which of
these measures is more effective, we need to be able to assess the quality of the matches
that they provide. Some discussion of this evaluation problem is given in section 4.
Section 5 describes experiments and results, and conclusions are drawn in section 6.

2 Elastic Matching of DT Images

The elastic matching algorithm used here is that developed by Bajcsy, Gee, et al, [5-7].
Given a pair of 3D images, the algorithm computes a high-dimensional warp,
described by a displacement vector field, from one fixed, reference image to the other,
target image. An iterative finite element method is used at consecutive levels of a
multi-resolution pyramid to find a displacement field that minimises an energy
function of the form:

E = A.deformation - a.similarity. 1)

o and A are weighting parameters. The similarity is a measure of the voxel to voxel
correspondence of the image pair. Its form depends on the type of data in the images.
For the deformation term we use the elastic body deformation described in [12], as in
[6,7]. An initial global affine registration of the two images is performed to ensure a
good starting point for the elastic matching. In the work reported here, we used Woods
AIR (Automated Image Registration) algorithm, [10,11], applied to single valued DT
trace images (see section 3), to compute an appropriate affine transformation.

The form of the similarity term in (1) appropriate for DT images is the subject of
this paper and some possibilities are proposed in the next section. As mentioned in the
introduction, DTs have intrinsic orientation and care must be taken when
transformations are applied to DT images to ensure that these orientations remain
consistent with surrounding anatomy. This requirement is illustrated in Figure 2. If the
DTs in the transformed image are simply copied from the corresponding voxels in the
untransformed image, without reorientation, their PDs would no longer point along the
axis of the fibre, which would be anatomically incorrect. Here we estimate the
appropriate reorientation at each point from the local displacement gradient. Several
approaches to this estimation are discussed in a companion paper, [8], in which a
method that applies the local displacement directly to the principal axes of the DT was
found to be more effective to techniques derived from classical continuum mechanics,
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[12]. We adopt that method in all the experiments reported here. The orientation of the
DTs is updated throughout the matching process according to the current estimate of
the displacement field. We note, however, that there is no term in the energy function
that explicitly couples the displacement with the reorientation of the DT so we do not
explicitly optimise over the DT orientation.

Same anatomic
fibre in another
brain.

Fibre in one
brain.

Figure 2 Depicts the same anatomic fibre in two different brains and the
orientations of the DTs within the fibres. When the shape of one fibre is warped to
that of the other, the DT orientations must change accordingly.

3 Similarity Measures for DTs

In this section, a number of similarity measures that might be used to match pairs of
DT images are proposed.

3.1 DT Similarity Measures

A simple comparison between two tensor quantities, D; and D,, is provided by the

tensor scalar product, D;.D,, given by, [12],
3 3
D,.D, = Dj D} )

ij !
=l i=l

where Dg is the ij-th entry of the matrix representing D,,.

Another measure, D;:D,, which is the sum of the squared scalar products between
each pair of semi-major axes, weighted by the corresponding eigenvalues, was
proposed in [4] as a measure of diffusive similarity between two media:

33
. _ 1521 2P
D,:D, = A2 (gi.gj) : ©)
j=l =l
where A is the k-th eigenvalue of D, and e, is the corresponding unit eigenvector.

In preliminary work on this subject, [13], we used a Euclidean distance metric,
d(Dy,D,), which can be negated to provide a DT similarity function:

d(D,.D,) = 4/trace[(D; - D,)?|. 4)
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The expression in the square root is equivalent to the sum of square differences of the
elements of the two DT matrices.

The total diffusivity at each point is closely linked to the concentration of water; for
this reason, similar features are exposed by the trace image as standard structural
MRIs. The benefit of DT imaging is the added structural information it provides in
regions, such as areas of white matter, where the anisotropy is high. Furthermore, there
is little evidence to suggest that the magnitude of the diffusivity is consistent in
corresponding regions in different brains. The deviatoric, [, of a DT, D, given by,

D=D- é trace(D)I, (5)

is the anisotropic part of the DT, which expresses just the shape and orientation of the
DT, independent of its scale, [4, 12]. Each similarity measure above can equally be
applied to deviatorics. Furthermore, each can be expressed simply in terms of the
similarity of the original tensors, thus:

0,0, =D,D, - %trace(D1 )trace(D,) , (6)
D,:D,=D,:D, —étrace(Dl)trace(Dz), and (7
[d(®,.0,) =[d(D,.D,)] —%[trace(Dl) — trace(D, ). (8)

Since the PD is one of the primary indices of interest from DT images, a reasonable
strategy might be to match purely on the principal diffusion direction. A natural way to
represent the similarity of DTs in terms of their PD is by the cosine of the angle
between them. In regions where the diffusion is isotropic, the PD is poorly defined. In
order to avoid problems in these regions, the similarity is weighted by the geometric
mean of the anisotropy of each DT to obtain the measure:

JVID V(D) (pd(Dy).pd(D,)), 9)

where v(D) represents the lattice anisotropy of D, defined in the next subsection, and
pd(D) is the unit principal eigenvector.

In summary, we have defined three DT similarity measures, three deviatoric
similarity measures and one PD similarity:
e D,.D,, of equation (2), and 0.0, of equation (6),
e Dq:D,, of equation (3), and 0.0, of equation (7),
e -d(Dy, D,), of equation (4) and -d(J;, J,), of equation (8),
e and the anisotropy weighted PD similarity defined in equation (9).
In order to improve the dynamic range of the similarity measures, the magnitudes of
D,.D,, Dy:D, and their deviatoric equivalents are square rooted in the energy function.

3.2 Intensity Correlation

Good results on single valued intensity images have been obtained in the past when the
local intensity correlation has been the similarity measure driving the elastic matching
algorithm, [5]. DT images can be matched by using this similarity measure on 1D
images derived from the DT image, such as the trace and anisotropy images. The
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correlation is a region based measure computed over a small neighbourhood of the
current voxel and so may be more informative than the single voxel measures
described in the previous subsection. For the images used in the experiments reported
here, structural images were acquired at the same time as the DT images and so a
match of the DT images can also be obtained by matching these structural images.
Here we compute matches using the correlation of three separate single valued images:
e Tl-weighted image,

e DT trace image,

e Lattice anisotropy image.

As mentioned in the introduction, we use the lattice anisotropy measure, which was
shown in [4] to be less susceptible to bias, introduced by noise in the data, than other
measures. The lattice anisotropy, v, is based on the lattice index, for a reference DT,
D,., and another DT, Dy, which is defined in terms of the similarity in (2) and (6):

LIN :£ ‘VDref : D/V +é Dref "D/V . (10)
\/g\/Dref:DN 4\/Dref:Dref\/DN:DN
To obtain v at a point in a DT image, Dyt is set to the DT at that point and the average

of LIy weighted by the distance between the voxel centres, is computed, with N varying
over the 8 in-plane neighbours.

4 Performance and Quality of Match

In order to compare the performance of the similarity measures suggested in the
previous section, a measure of quality of the match obtained between two images is
required. For the tasks of interest to us, i.e., inter-patient matching of 3D brain
volumes, this is difficult, as ground truth is hard to obtain. The goal is to achieve an
optimal anatomical match, where voxels representing the same anatomical features are
associated. Perfect anatomical matches cannot be obtained, because features may be
individual to particular brains and not present in others. However, we would like to
ensure that anatomical features that do appear in both images are associated and that
their internal structure is preserved as well as possible.

Any of the similarity measures described in the previous section can be used to
provide a measure of match quality by computing the average value over the two
images after matching. Such measures can be informative, but they are biased in
general, and may not be a direct indication of the anatomical match quality. The best
value for such a quality of match measure is most likely to be obtained by using the
same measure to drive the matching process and there is no guarantee that maximal
similarity corresponds to best anatomical association of the two images.

Another way to assess the performance is to compare the match with an association
of anatomical features provided by hand. Such data could take the form of either a
number of associated point landmarks or corresponding regions outlined in both
images. Although measures generated in this way are more objective than those
obtained by summing voxelwise similarity measures, there are still problems. Firstly, it
can be difficult to place landmarks accurately by eye and localisation is particularly
difficult in the out of plane axis. Also, landmarks tend to be defined in places in the
image where the anatomical association is obvious from surrounding edges in single
valued intensity images. These are the regions that tend to matched easily by the
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algorithm and so closeness of landmarks may not imply a good match of structure
within regions. Similar problems exist with measures generated from the overlap of
hand outlined anatomical regions, although the edges of the region may be well
matched, we also require a good voxel to voxel match within the region. This issue is
particularly important for DT image matching as the reorientation of the DTs can only
be computed correctly if the voxel to voxel association is good. If the voxel association
is poor, much of the useful structure of the DT image may be lost.

Because of the problems associated with these methods for evaluating match
quality, we use a consensus approach to compare the suggested similarity measures.
Optimal algorithm parameter settings, in particular the balance of o and A in (1), are
selected by minimising a hand-defined landmark separation measure. Match quality is
then assessed by averaging similarity measures over the matched pair of images.

5 Experiments and Results

In this section, we describe a set of experiments designed to compare the effectiveness
of the similarity measures proposed in section 3. First we give details of our data sets.
The experiments are then described and results presented.

5.1 Data

A single pair of brain volumes is used in the following experiments. Both are images of
human brains taken from young female subjects. The image acquisition methodology is
similar to that reported in [1]. Images were acquired using a 1.5T GE Signa Horizon
EchoSpeed spectrometer. Each DT image consists of 33 contiguous axial slices, with
slice thickness 3.5mm, 220mm field of view and 128x128 in-plane resolution. Six
gradient directions were sampled and 4 images were acquired for each direction. 4
images with no diffusion weighting were also acquired and so a total of 28 T2-
weighted acquisitions were made per slice of the DT image volume. Structural, T1-,
T2- and PD-weighted, images matching the slices of the DT images were obtained at
the same time, but with in-plane resolution of 256x256.

A slight misregistration between the DT images and the corresponding structural
images can be observed and so a pre-alignment is performed on each DT image using
Woods’ AIR program. The brain volumes are then extracted from the images by hand.

By simultaneously viewing the trace, anisotropy and T1-weighted images of each
volume, 237 associated landmarks were placed in the two volumes. Care was taken to
ensure that the spatial distribution of these landmarks over the image volume was as
uniform as possible. A globally registered version of one image was used in the display
to assist the localisation of points in the out of plane axis.

5.2 Experiments

Each data set was interpolated, using trilinear interpolation separately for each of the
six DT component images, to a uniform Imm’ volume. After an initial global
registration of one volume to the other, multi-resolution pyramids are computed from
each data set, by sub-sampling at a factor of two down to a lowest resolution of one-
sixteenth the size of the isotropic image in each dimension. Elastic matching is then
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performed at four levels, from the lowest resolution up to half the size of the original
image. A in (1) is reduced by a factor of 2 at each level from 1.0 at the lowest
resolution, down to 0.125 at the highest.

An optimal setting for o is found separately for each similarity measure by
minimising the summed Euclidean distance between corresponding landmarks. The
following similarity measures, averaged over the overlap of the within-brain regions of
both images, are then computed to indicate the quality of each match:

e Squared DT trace difference (lower value implies better performance).

e Squared anisotropy difference (lower implies better).

e Euclidean DT difference given by (1) (lower implies better).

e Anisotropy weighted PD similarity given by (5) (higher implies better).

The first two measures provide an indication of how well the prominent features in the
trace and anisotropy images are aligned. The latter two give further insight into the
quality of the match that is obtained within homogenous regions. The Euclidean DT
difference measure is chosen in preference to the other DT similarity measures,
because the landmark separation measure suggests that it produces better results in
general, as can be seen from the results below.

The numerical results are summarised in Table 1. A row is included with numerical
results from the match obtained by the global transformation alone for comparison
with those obtained with the additional elastic matching phase.

Summed Av. Sq. DT | Av. Sq. | Av. DT | Av.

landmark | trace diff. anisotropy | diff. Weighted

separation diff. PD sim.
Global only. 1139 69.2 73.4 650.3 0.743
T1-Correlation 971 68.5 71.9 644.8 0.748
Trace-Corr. 980 65.6 69.3 627.2 0.761
Anis.-Corr. 980 69.1 66.4 639.1 0.765
D.D; —eq. (1) 1006 70.1 74.4 659.0 0.739
Di:D; —eq. (2) 1007 69.9 74.3 658.6 0.738
-d(Dy,D,) —eq. (3) 978 65.9 66.9 622.2 0.772
D1.0>—eq. (5) 1005 69.6 72.3 650.5 0.752
D10z — eq. (6) 1003 69.7 73.0 653.5 0.745
-d(D,,02) —eq. (7) 982 69.5 67.3 633.6 0.778
PD Sim. — eq. (8) 1006 70.1 74.3 659.0 0.740

Table 1 Numerical comparison of matches obtained using different similarity
measures. Bold lettering indicates improvements over the global registration.

6 Conclusions

Good results are obtained from the correlation based matches and from the Euclidean
distance measure applied to both the full DT and the deviatoric. The other tensor
similarity measures, D;.D, and D;:D,, are clearly inferior for this task. Some
improvement is evident when they are applied to the deviatoric, rather than the full
DT, but performance in terms of both landmark association and voxel similarity is still
worse than for the Euclidean measure. The match obtained from the PD alone is also
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poor. Much of the information contained in the DT is discarded when the PD alone is

used and in many regions its value may be poorly defined. The resultant lack of

features over large areas of the image means that the match is poorly constrained and,
consequently, results are poor even in regions where the PD is strongly defined.

The match obtained using T1 correlation produces the best performance in terms of
the landmark separation measure, but scores relatively poorly in terms of the similarity
measures. Matches based on correlation of the trace and anisotropy images produce
good similarity of the index used to compute the correlation, but relatively poor
similarity of the other. We note that although it is not unreasonable to expect that
better landmark association might be obtained by using the higher resolution T1
image, this measure may be biased in favour of the T1 correlation match, since it is
also easier to place landmarks in this more detailed image. Residual mis-registration of
the DT and T1 images may increase the separation of landmarks in the image in which
the landmark was not placed directly.

Unlike any of the correlation measures the Euclidean distance, which takes into
account all the information contained in the DT, scores well in terms of all the
similarity measures. Use of the full DT appears to produce the most consistently good
similarity, but it is not clear whether the best results are obtained from the full DT or
from the deviatoric. Further tests over an extended image ensemble are required to
establish more conclusively which approach is best.

These results are preliminary in the sense that they are computed over just a single
pair of images. Further testing is planned as data from large-scale clinical studies
becomes available. However, we can draw some conclusions from the results presented
above. In summary,

e Correlation of single valued indices produces good association of landmarks,
which tend to appear at edges in the image, and good voxel correspondence of the
index used in the correlation. However, the correspondence of complementary
indices tends to be poor.

e  More reliable results can be obtained by exploiting all the available information in
the DT. In particular, matches computed using the Euclidean distance measure
between vectors of DT components produces similar levels of landmark
correspondence to the correlation measures, but good levels of similarity of all
derived indices are obtained.

As well as extending testing to larger a data set, there are some other areas on which

attention will be focussed in future work on this subject:

e It is not clear that the Euclidean measure is ideal and it may be possible to
construct more suitable alternatives, for example, by considering the physics and
statistics of the imaging process.

e Strong performance of the correlation measures above suggests that the use of
neighbourhood based similarity measures can enhance the performance. It may be
possible to devise multivariate correlation measures that can be used with full DTs.
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