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Abstract

In this papemwe addressheproblemof recoveringstructureandmotionfrom
the contoursof a smooth-curedsurface.A novel andsimplertechniquefor
computingthe structureof an objectfrom its profilesis introduced.Exper
imentswith real datashav encouragingesults,which are comparableo
thoseobtainedfrom much more sophisticatedechniques. Furthermorea
new methodfor motion estimationfrom sequencesf profilesis proposed.
Preliminaryresultsdemonstratéhe feasibility of the algorithm.

1 Introduction

The recovering of structureand motion from sequencesf imagesis a centralproblem
in computervision, andits solutionhasgenerated rich pool of algorithms[8, 1]. Most
of thesealgorithmsrely on correspondences pointsor linesbetweerimagesandwork
well whenthe scenebeingviewedis composeaf polyhedralparts.However, for smooth
surfaceswithout noticeabletexture, point andline correspondencesay not be easily
establishedln this casethe profile of thesurfaceis, very often,the only featureavailable.
This calls for the developmentof a completelydifferentsetof techniquesasthe ones
foundin [17, 16, 19, 5, 2, 18].

In this paperwe addresghe problemof structureandmotionrecovery from the pro-
files of smoothsurfaces. In section2, the differentialgeometryof surfacewill first be
briefly reviewed. This formsthetheoreticaframenork for varioustechniquesleveloped
for thereconstructiormf surfacedrom profiles. Existingmethoddor reconstructiorfirom
discreteviewpointsarethendescribecandcompared A simpleandbasicmethodfor re-
constructionis proposedandexperimentakesultsare presentedshaving thatthe model
recoveredby this simplemethodis comparabléo the others.The problemof motiones-
timationis tackledin section3, whereanovel techniquepasedn propertieof theaffine
epipolargeometryundercircularmotion, is introduced.Experimentswith syntheticdata
demonstratinghefeasibility of the methodhave beencarriedout, andpreliminaryresults
arepresented.
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2 Reconstruction from Apparent Contours

2.1 Surface Geometry

Consider a poinP on a smooth-curved surfade Under perspective projection the vector
positionr of P is given byr = ¢ + Ap, wherec is the camera centre positiop,is the
unit viewing direction and is the depth of the poin® along the viewing directiop. For
a given camera centre positienthe set of points on the surface for which the visual
ray is tangent tcb is called the contour generator and must satisfyn = 0, wheren
is the unit normal to the surfacg atr. The contour generator depends on both local
surface geometry and camera position, and its projection onto the image plane is called
the apparent contour, which forms the profile of the surface in the image.

As the camera moves, the contour generator sweeps over the visible surface. Thus the
surfaceS can be parameterised by this spatio-temporal surface swept out by the contour
generators as a result of the camera motion

r(s,t) = c(t) + As,t)p(s,1), (1)
p(s,t)-n(s,t) = 0, )

where the parameterdescribes the position along the contour generator while the param-
etert corresponds to time. Such a parameterisation is however under-constrained: curves
of constant are the contour generators with camera centre positigf)s while curves

of constants have no physical interpretation. The most widely used parameterisation is
the epipolar parameterisation [4] (see fig. 1) which is derived from the epipolar geometry
in stereo vision: two points on two successive contour generators are correspondent if
they both lie in the epipolar plane defined by the two camera centre positions and one of
the points. Below the subscriptsandt represents the spatial and temporal derivatives

Figure 1: Epipolar parameterisation for the spatial-temporal surface swept by the contour
generators.

respectively. By differentiating (1) with respect éaand taking the scalar product with
the normah(s, t), and combining with (2) ang; - n(s,t) = 0, we havep, - n(s,t) = 0.
Thus the surface normal can be recovered from the apparent contour up to a sign by

_ p(s,t) Aps
= PO AR ©)

Finally, by differentiating (1) with respect tband taking the scalar product with the
normaln(s,t), and combining with (2) and; - n(s,t) = 0, depth\(s, t), and thus the

n(s,t)
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3D structurer(s, t), can be recovered by [4]

_ ¢ -n(s,t)
/\(8, t) = —m- (4)

2.2 Discrete Viewpoints

The depth formula (4) requires a dense continuous image sequence for approximating the
spatial and temporal derivatives, and is sensitive to edge localisation. However, in practice
only images at discrete viewpoints will be available and thus (4) cannot be used directly.

Cipolla and Blake [5] developed a simple numerical method for estimating depth from
a minimum of three discrete views by determining the osculating circle in each epipolar
plane. Given three correspondences in three consecutive apparent contours, the viewing
lines defined by them are projected onto the epipolar plane defined by the first two. By
assuming that the curvature of the epipolar cury®, t) is locally constant, it can be
approximated as part of a circle tangent to these viewing lines. Vaillant and Faugeras [19]
developed a similar algorithm which uses the radial plane instead of the epipolar plane.
The osculating circle methods require the camera motion to be close to linear and the
surface remains on the same side of the tangents in the projection plane.

Boyer and Berger [2] derived a depth formulation from a local approximation of the
surface up to order two. Given two corresponding poiitsand P, on two successive
contour generators with vector positians= c¢; + A1 p1 andrs = c2 + A2p2, by taking
the scalar product of the difference with the normalto the surface aP,, we have

_ Ac-ny Ar - ny
)\1 — _Ap'nz—i_Ap'nz’ (5)

whereAc = ¢; — co and likewise forAr andAp. The second term in (5) involveSr

which is the distance betwedh and P, and cannot be computed, a priori, from measure-
ments in two images. Based on a local surface model with a second order approximation,
Ar - ny can be expressed in terms of the normal curvature along the viewing direction.
This allows the local shape to be estimated from three consecutive contours by solving
a pair of simultaneous equations of the form (5). It only requires that the surfaces are at
leastC? and are not locally planar.

In this paper, we propose to use simple triangulation techniques for reconstruction
of the curved surface. The epipolar parameterisation of the spatial-temporal surface is
adopted and points on consecutive apparent contours are matched according to the epipo-
lar correspondence. The space point can then be obtained by a least square solution to the
triangulation problem. This method is indeed a finite-difference (discrete) approximation
to (4). LetA; and); be the distances between the intersection ppamd the two camera
centre positiong; andcs along the viewing directionp; andp- respectively, we have
q = ¢; + A\1p1 andq = c3 + Aap2. By taking the scalar product of the difference with
the normaln, to the surface aP,, we have

Ac - ny

Moo= Ro ©®)

This equation fob\ is essentially the first term in (5). In [2], Boyer and Berger criticised
that, by omitting the second term involvilgr - n, in (5), it is assumed that the contour
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generators are not view dependent, which is false, and thus leads to error in depth estima-
tion. In spite of that, if both the local radius of curvature of the surface and the motion of
the camera are small, such errors will be negligible and would not affect the general shape
recovered (see sec. 2.3). This method is, of course, computationally simpler. Unlike other
methods, no decomposition of the 3x4 projection matrix is needed to obtain the calibra-
tion matrix for converting image coordinates to the unit viewing vepi{@t t), making it
numerically more stable. Finally, this method can be used with affine cameras which do
not have the concept of camera centre position.

2.3 Implementation and Experimental Results

Figure 2: Four consecutive images in the sequence are shown with apparent contours
being tracked by cubic B-Spline snakes.

A head model has been reconstructed from the same image sequence using Boyer
and Berger's method, finite-difference approximation and simple triangulation respec-
tively. The image sequence was acquired by rotating the head model on a turntable with a
fixed camera. The rotation angle between two successive image$(ds and the whole
sequence consists of 36 images. The cameras were calibrated by taking 5 images of a cal-
ibration grid performing the same motion on the turntable. Corner features were tracked
through the 5 images of the calibration grid and the axis of rotation was estimated by
fitting circles to the trajectories of the corner features in space. The projection matrices
for the cameras were then generated analytically from the first camera matrix and the
axis of rotation. The apparent contours were tracked by using cubic B-spline snakes[4]
(see fig. 2). Fundamental matrices [13, 20] between two successive images were formed
from the corresponding projection matrices and correspondences were then found by solv-
ing for the intersections between epipolar lines and the cubic B-splines analytically and by
using ordering and disparity gradient constraints to resolve for any matching ambiguity.
The results of the reconstructions are shown in fig. 3.

It can be seen that the contour generators recovered by Boyer and Beger’'s method are a
bit smoother and less noisy. Nonetheless, the models from finite difference approximation
and simple triangulation are still comparable to that from Boyer and Berger’'s method, and
the difference is hardly observable after shading. By assuming the radius of cue/ature
along the epipolar curve be locally constant, the efravhich is the distance between the
reconstructed point and the surface, is given by

€ = (sec(ip/2) — 1) d ~ di?/8, )

whereyp is the angle between the viewing directions (see fig. 4). If the camera is far from
the rotating objecty can be approximated by the angle of rotatianForw equalsl0°,
the error will be0.38% of the radiusd, which will be negligible for small values af.
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(d) (e) ®
Figure 3: Results of reconstructions. Top row shows the wireframe models and the bot-
tom row shows the models after shading: (a,d) Model built from simple triangulation.
(b,e) Model built from finite difference approximation. (c,f) Model built from Boyer and
Berger’'s method.

3 Motion Estimation from Apparent Contours

The fundamental difficulty in estimating the motion of a smooth surface from the se-
guence of images of its contour generators is that, unlike point or line features [20], the
contours do not readily provide image correspondences that allow for the computation of
the epipolar geometry, summarised by the fundamental matrix. This characteristic makes
the motion estimation difficult even for humans, under certain circumstances [15]. A
possible solution to this problem is the useegiipolar tangencie§l6, 3], as shown in

fig. 5. An epipolar tangency is the projection of finentier points[3] (referred to adixed
pointsin [17]), which is the intersection of two consecutive contour generators. If enough
epipolar tangencies are present, the epipolar geometry can be estimated, and the motion
is determined up to a projective transformation. The intrinsic parameters of the cameras
can then be used to fix the motion of the surface [11]. The main problem of this approach
is that a minimum of 7 epipolar tangencies are required, a number which is seldom ob-

/

Figure 4: The erro€ between the reconstructed point and the surface is related to the
radius of curvatured and the angle between the viewing directions.
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Figure 5: A frontier point is the intersection of two consecutive contour generators and is
visible in both views. The frontier point projects to a point on the apparent contour which
is an epipolar tangency.

tained in practical circumstances. If the motion and the intrinsic parameters are known to
be constant, the epipolar geometry between successive images will also be constant, and
epipolar tangencies for successive pairs of images can be used altogether in the estima-
tion of the fundamental matrix. Another possibility is the use ohHime camera modgel

which, as shown in [14], allows for a simpler and more robust estimation of the epipolar
geometry from only 4 epipolar tangencies.

The method presented here for motion estimation from apparent contours is a fusion
of the techniques introduced in [14]. In these works the main image features of the cir-
cular motion, namely the image of the rotation axis and the horizon line [10, 9], are used
to derive a parameterisation of the fundamental matrix with only 6 degrees of freedom
(d.o.f.), while the affine approximation is used to reduce the space of search of the pa-
rameters of the fundamental matrix. The drawback of the first method is that 6 epipolar
tangencies are still needed, or 4 images with two epipolar tangencies each if the angle of
rotation of the circular motion is fixed. In the affine case, 4 epipolar tangencies are still
needed, and, again the use of successive pairs of images is possible only if the motion is
constant.

3.1 Theoretical Background

Consider two affine cameras. The orientation of the epipolar lines on each image will
depend only on the relative orientation of the normals to the image planes acyttbe
torsion which is the rotation of the cameras around their optical axis. Fig. 6(a) shows a
camera rotating an angle around an arbitrary (but fixed) axis. The angle between the
image of the axis of rotation and the vertical axis in the image plane (in image coordi-
nates) is denoted b, as shown in fig. 6(b). The angle between the image plane and the
rotation axis is represented in Fig. 6(c)dylt is important to notice that the anglésnd

1 are preserved by the rotation around the fixed axis.kietindk, be the unit vectors
corresponding to the directions of the optical axis of the reference camera and the camera
rotated byw, respectively, according to fig. 7(a). It is easy to see that the efféobothe
orientationa of the epipolar lines is simply to rotate them &yWithout loss of general-

ity, let 8 be equal to zero. To compudeit is necessary to projekt, back to the reference
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X Image of the
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Figure 6: (a) The cameras are related by a rotaticaround a fixed axis. The anghe
shown in (b) corresponds to the angle between the vertical axis in image coordinates and
the image of the axis of rotation. In (c) it can be seen that the angle between the axis

of rotation and the image plane. Bathandf do not change due to the rotatien

image, following the direction dk; (see fig. 7(b)). Using elementary trigonometry, it is
possible to show that the anglewill be given by

a = —arctan (sim/z X <m>) . (8)

sin w

For non-zero cyclotorsiord(# 0), the angley; ; of epipolar lines atimagéeproduced by

2 ki

@) (b)
Figure 7: The orientation of the epipolar lines can be computed from the angiesd
w and the effect of can be considered separately. The vektois projected in the image
plane according the direction Rf .

imagej will be given byy; ; = —0 + o, ;, whereg; ; is the same as in (8) with = w; ;.
If a sequence af affine images of a surface rotating around a fixed axis is available, there
will be n +1 parameters to be estimated: the 2 anglasdy, and then — 1 angleswy; ;11
between successive cameras. Obviously, the angjéetween the camerasand;j can
be computed agi;ﬁ)_l wit+k,i+k+1, and it does not need to be represented using more
parameters. It is worth emphasising the importance of (8). It allows for the representation
of all then(n — 1) orientations of the epipolar lines in a sequence affine cameras (all
arrangements of pairs of images) with only- 1 parameters.

Further simplification can be achieved if the intrinsic parameters of the affine camera
are assumed to be constant. In this case the image of the rotation axis, represented by
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the linel in homogeneous coordinates, must be the same in all images. Everypoint
(also in homogeneous coordinates)jraken at image, must correspond to a poist

with the same coordinates in imagel etF; ; be the fundamental matrix relating images

i andj. Then, the equatios™F; ;x = 0 is satisfiediff the pointx lies in the linel.
Assume now that two epipolar tangencies are available in each ifragge;j, which is
equivalent to having at least one closed contour per image. The intersection of the pairs
of correspondent epipolar lines (overlapping imagasd;j) provides two point&},j and

x? ; which satisfyx™F; jx = 0, and thus must lie ia. Thus, the sequence of images
providesn(n — 1) points to determine the lirke Since two points fix a liney(n — 1) — 2

points remain, each one allowing one measurement for the estimation @f thel)-

tuple of angle®, ¥ and{w;,i+1}7=", henceforth denoted . Moreover, even if all the
intersections of the epipolar lines are aligned, one further measurement s still possible, as
the angled between the liné and the vertical axis in image coordinates must be equal to

0. The resultis that images containing 2 epipolar tangencies each pravide- 1) — 1
measurements to estimate the- 1 parameters2, which can then be computedrif> 3.

This is a great advantage over the results presented in [14, 6], where even for circular
motion withfixed rotation angle4 images with 2 epipolar tangencies were still needed.
The overall cost function for the estimation@fis given by

C@) = Y (@), ) + & (x7,1) + (tanb — tan0)?, ©)
1,7
whered(x, 1) is the orthogonal distance between the peairdnd the linel. The tech-

nigue to estimate the parameters of the circular motion of affine cameras is summarised
in algorithm 1.

Algorithm 1 Estimation of the motion parameters from apparent contours.
track the contours using B-Splines;
initialise the angles$?;
while not convergelo

compute the intersectimﬁlj) andx(zj) of epipolar tangents

fit a linel(€2) to the points of intersection;
compute the anglé betweerl and the vertical axis in image coordinates;
compute the cost functiofi (€2), as shown in (9);
updatef2 to minimiseC(Q);
end while

3.2 Experimental Results

A preliminary experiment with synthetic data was carried out. Five images of an ellipsoid
were generated [7] by successive rotations of a came2@hyThe optimisation method
used to implement the algorithm described in algorithm 1 was the Broyden-Fletcher-
Goldfarb-Shanno [12]. The computation of the derivatives of the cost function was done
by finite differences, and each angle@fwas initialized within7° of the ground truth.
The epipolar lines and their intersections after convergence can be seen in fig 8.

To evaluate the effect of noise in the algorithm, each ellipse correspondent to the 5
images of the ellipsoid was sampled in 50 points. Uniform noise was added to each
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Figure 8: Images of the ellipses and epipolar lines after convergence. Each figure shows
the overlapping of imagesandyj, fori = 1,...,4andj =i + 1,...,5. The stars indicate
the intersection of correspondent epipolar lines.

angle 6 P w12 w3 3 w3,4 w45
ground truth 5° 20° 20° 20° 20° 20°
initial guess 0° 27° 13° 20° 34° 20°
noise | iterations | erroriné error iny error inws 2 error inws, 3 error inws 4 error inwy, 5
0.0 39.0000 0.0097° 0.2297° 0.2205° 0.2206° 0.2244° 0.2252°
0.1 38.8571 | 0.2148° 0.5457° 0.4666° 0.4825° 0.4981° 0.5066°
0.5 29.8444 | 1.0025° 0.9287° 0.8373° 0.7111° 0.7819° 0.6150°
1.0 26.0167 | 1.9926° 1.2045° 1.0959° 1.0314° 1.0880° 1.0838°
15 23.4906 | 3.0633° 1.7428° 1.4864° 1.7090° 1.7275° 1.6781°
2.0 21.7660 | 3.4753° 2.0284° 1.8631° 2.0974° 1.8470° 1.9657°

Table 1: After reaching the global minima valley, the algorithm promptly converges to the
correct solution, and generally the angles describing the motion are correctly estimated
within 2° of accuracy. Nevertheless, the presence of local minima and the insensitivity of
the cost function to variations in make the search very difficult.

point, and a new ellipse was fitted back to the disturbed points. This experiment was
reproduced 100 times for each different noise level, and the resfultee experiments

that convergedare presented in table 1. The iterations presented for each noise level is
the average number of iterations before convergence, and all errors are root mean square
errors in degrees. The noise level is in pixels. Several problems were already found at this
stage of the implementation of the algorithm. The expressioa fgiven by (8), is very
insensitive to changes infor any practical value, e.g, < w < m/2. The effect of noise
produces more disturbancedrthan small variations iw. Furthermore, the cost function

C shown in (9) has many local minima points, some of them in regions with a radius of

5° around the global minima, making the initialisation step of the algorithm very critical.

4 Conclusionsand Future Work

The technique for reconstruction proposed here is indeed well-known in stereo-vision, in
the context of point and line features. Nevertheless, its application for curved surface re-
construction is original, and the results obtained were convincing. Moreover, the method
is more flexible than previous ones, as it can cope with affine cameras. This makes it
suitable to be used in conjunction with the motion estimation technique presented in sec-
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tion 3.

The novel algorithm for motion estimation here introduced has a main advantage over
previously proposed methods, in that it can cope with circular motion at a variable rotation
angle even when only two epipolar tangencies are available in each image. This is a situ-
ation of great practical interest, since it corresponds to the motion of an object placed on
a turntable spinning at unknown angle. Although the preliminary results are satisfactory,
the algorithm is very sensitive to noise, and the presence of several local minima points
in the cost function (9) makes the convergence difficult. The investigation of solutions to
these problems are to be addressed in a future work.
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