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Abstract

This paper presents a system for refining the accuracy and realism of coarse
piecewise planar models from an uncalibrated sequence of images. First,
dense depth maps are estimated by aligning a planar region of a scene in each
image, approximating camera calibration, and generating dense planar paral-
lax. These depth maps are then robustly fused to obtain incrementally refined
surface estimates. It is envisaged that this system will extend the modelling
capability of existing systems [3] which generate simple, piecewise planar
architectural models.

1 Introduction

The acquisition of metric 3D structure from multiple uncalibrated images has been one
of the most actively pursued computer vision tasks of recent years. Systems have re-
cently been developed to automatically recover general 3D models from a large number
of closely spaced images. For instance, [2] uses robustly tracked features to calibrate
each camera and update an estimate of the 3D location of each tracked point in a “quasi-
Euclidean” frame. More realistic models are generated in [9] from dense disparity maps
calculated between adjacent viewpoints, and bi-directionally linked along the image se-
quence. Here self-calibration is obtained from the absolute quadric, which unlike quasi-
Euclidean frame estimation does not require an initial calibration estimate. As they make
no assumptions about the structure of the scene and require many images, these systems
are both computationally expensive.

In practice many scenes, especially those in man-made environments, are well approx-
imated by a small number of planar faces. Systems which exploit this constraint, such as
Facade [12], can produce highly realistic models of architectural scenes from relatively
few, widely spaced images at less computational expense. However, Facade requires a
user to specify a coarse polyhedral model of the scene and register it in each each image.
This is a laborious process and limits the complexity of the model which can be practi-
cally recovered. More recent interactive modelling systems such as PhotoBuilder [3] and
[11] require only that the user specify key image features such as parallel or orthogonal
lines, but the effort required of the user quickly becomes prohibitive as the desired model
complexity and number of images increases.

This paper proposes a system which uses planar parallax to enable such interactive
systems to recover more complex and realistic models with minimal cost to the user.
Given a sequence of images of a near planar scene and a planar model of the scene, it it-
eratively refines the accuracy of this model. It is particularly suited to architectural model
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refinement, as images of architectural scenes are often dominated by a single approxi-
mately planar surface such as a wall. It also complements the more general 3D modelling
systems, for which such a scene is a near degenerate case.

2 Theory of planar parallax

A pair of images of a planar (2D) scene is related by a 2D projective transformation,
known as a homography. The idea of planar parallax is to align two images of a planar
region of a scene by applying the homography induced by that region to one of the images
(see figure 2). This decomposes the motion between frames into two components: the

(a) Left Image (b) Right Image, Un- (c) Right Image, Warped
warped

Figure 1: (c) shows the result of warping the right image (b) so that the plane of the
tabletop is aligned with the left image (a). Note that all points on the tabletop are aligned
while those above the table (such as the top surface of the book) are displaced by a residual
parallax.

homography H , and a set of residual motion vectors, known as a planar parallax field. It
has been shown [4, 13] that for a plane of equation n”' X = d in the coordinate system of
the first camera, H is of the form

H = C[Rd + tnT]C™!

where C is the camera calibration matrix (assumed to be the same for each camera) and
R is the rotation and t the translation between the cameras. Thus H encapsulates the
calibration of the cameras and the rotation between them, while the planar parallax field
depends only on the translation between the cameras and depth of each point. Because the
parallax field depends only on the translational motion of the camera and not its rotation,
it converges at the epipole [5], as shown in figure 2. It is clear from figure 2(b) that
while it is theoretically possible to compute the epipole from these vectors, in practice
the estimation is very unstable, particularly when the epipole is far from the image or the
parallax vectors are small.

The planar parallax decomposition has been successfully applied to many problems
of computer vision; in particular it complements more general algorithms for which 2D
structure is a degenerate case. For instance, novel views of approximately planar scenes
are generated using parallax in [7]. Because they separate the effects of translation and
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Planar scene

Camera 1 Camera 2

(a) Parallax geometry (b) Example parallax field

Figure 2: (a) The geometry of planar parallax. If z is the projection of a point X belonging
to the planar region, its correspondence z’ will be aligned with it when image 2 is warped
by H . However if z is the projection of a non-planar point such as Y, its correspondence
after warping will be given by y, resulting in the planar parallax vector p aligned with the
epipolar line ze. (b) Example parallax vectors. The epipole for this image pair has been
independently computed to be at position (3187, -31); i.e. far to the right and just above
the top of the image.

rotation, image warping and parallax have been used to simplify egomotion estimation,
and to detect independently moving objects in a scene [8]. In [4, 13] planar parallax is
linked to projective depth, which with camera calibration information can be related to
euclidean structure.

3 Model refinement algorithm

3.1 Overview

This section details each step of our algorithm for applying planar parallax to model
refinement from multiple uncalibrated images. These steps are summarised as follows:

1. One image is chosen to be the reference image, and one plane chosen as the ref-
erence plane. A homography is computed between each image of the reference
plane.

2. Each camera is calibrated using these homographies.

3. A dense parallax map is estimated between the reference image and each other
image.

4. A depth map is estimated and sequentially refined using the parallax maps. The
final result is viewed as a triangulated, texture mapped VRML surface.
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3.2 Homography definition

Our calibration method (section 3.3) requires that one image is chosen as the reference
image. This image must be approximately front on to the reference plane. The reference
plane is selected manually, and the homography between the reference image of the plane
and each other image of the plane is then determined. As the homography is a 33 matrix
defined up to a scale factor, it has 8 degrees of freedom; therefore it is defined by at least
4 corresponding points belonging to the plane. These are selected as the intersection of
lines defined by the user, which are automatically fitted to local intensity edges to improve
their accuracy.

3.3 Camera calibration

This calibration technique is intended to generate initial estimates of the projection matri-
ces Py, to be refined at a later stage. It assumes a simple perspective camera model which
is well approximated in practice: that the camera has zero skew, an aspect ratio of 1, and
that its principal point lies at the centre of the image. Then its projection matrix has the
form

P, =C [Rg |t ]

o |s 90l
Lo 0 1]

R, is a rotation matrix and the vector t;, defines the translation of the camera centre in
the world coordinate system. We define the world coordinate system so that the reference
plane has equation z = 0, and the origin is given by the intersection of the optical axis
of the reference camera with the plane. As the reference image is approximately front on
to the reference plane, its rotation matrix R,c¢ ~ I and its translation t,.¢ ~ [0 0 d]T,
where d is the distance of the optical centre from the plane. Hence its projection matrix
has the form

where

f 000
P~ |0 f 00
001 d

and the world plane to reference image homography is given by the scaling

y N|'f 0 0'|
SEI R

Assuming that all images were taken by the same camera (and hence have the same cali-
bration matrix C ), the pose and hence the projection matrix of any other camera & can be
calculated from the homography H;ef between that image and the reference image. Let

P = Clrix|rar|rar |ts]

Then
H}é’ld = C[I‘lk |I‘2k |tk]
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The focal length f can be estimated using the fact that ry and ro, the first two columns
of a rotation matrix, must be orthonormal. d can be set arbitrarily to 1, as there is an
ambiguity between magnitude of the camera translation and its distance from the plane.
Py, is then completely determined by setting r3 to be the cross product of r1 and rs.

3.4 Finding correspondences

Before finding a disparity map, we warp each image so that the reference plane is aligned
with the reference image of the plane. This greatly simplifies the correspondence problem
and facilitates the recovery of dense disparity maps, as shown in [12, 9].

To obtain a parallax field we apply a complex wavelet transform to each image and
perform multi-resolution matching based on the phase of the output coefficients at each
level. Due to some redundancy in the wavelet representation, similarity surfaces can be
interpolated between pixel locations, which allows subpixel accuracy in matching and
provides a directional confidence measure for each matched pair. More details are given
in [10]. As the cameras are calibrated we weight the matching constraint to favour cor-
respondences along epipolar lines. At each resolution the parallax field is regularised by
minimising the energy functional

E({u}) = Esm({u}) + A, ({u})

where Ej,, ({u}) measures the variation of the field {u}, E,,({u}) is a measure of the
error between {u } and the unsmoothed parallax field, weighted by the confidence of
each matched pair, and X is a scale factor controlling the relative influence of these two
terms (we use A = 0.2). [1] suggests appropriate formulae for these error terms and a
method for minimising E({u}). Because it assumes that the scene is a smooth surface,
this algorithm is vulnerable to surface discontinuities and occlusion. We address this
problem when interpolating the disparity field from coarse to fine by considering each
of the four coarse level disparities surrounding a finer level disparity as a candidate for
the interpolated disparity. Rather than averaging these candidates we choose the one
which results in the best match at the finer level, thereby eliminating the influence of
most mismatches at the coarse level and preserving sharp changes in depth. The problem
of matching failure is also tackled in the depth estimation stage, as described in section
3.5. This algorithm matches two 640x480 images in less than a minute on a Sun Ultra 1
workstation, and is used to find correspondences between the reference image and each
other image in the sequence.

3.5 Depth estimation

Our initial esitmate of depth, derived solely from the reference image, is z = 0 for all
points; that is, the initial structure is given by the reference plane. To update the depth
map we unwarp the correspondences between a selected image and the reference image,
and triangulate using the method proposed by Hartley and Sturm [6]. This is based on
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the observation that matching errors arise in the image plane, and hence finds the pair
of epipolar lines which minimise the total image distance to the pair of correspondences,
before correcting the correspondences so that they lie on these lines. This is optimal under
the assumption that correspondences are perturbed by isotropic, homogeneous Gaussian
noise. By matching between the aligned images and triangulating between the unaligned
images, we take advantage of both the simplified correspondence of small baseline stereo
and the accurate depth triangulation of wide baseline stereo.

By triangulating between the reference image and each other image in turn we obtain
a set of depth estimates for each point in the reference image. It was found that for the
small number of images used, the simplest and most effective way to avoid the influence
of outliers is to set the current depth estimate to be the median of the depth estimates
obtained so far.

However this strategy is not reliable near depth discontinuities, where the correct
match may be visible only in a minority of images (see figure 3). If a point is found to be
near a possible discontinuity, we use instead only the depth estimates from the cameras
which are in a position to avoid occlusion. We presently detect possible discontinuities
by measuring the local variation in the current depth estimates.

Planar surface, with indentation

z
’ Image 2
Image 1

Camera 2 L

Camera 1 Camera 3 Reference

Image

(a) Partially occluded surface (b) Depth uncertainty

Figure 3: (a) The area to the left of the indentation is occluded from camera 1; in this case
our algorithm uses only the depth estimate from cameras 2 and 3 for points in this region.
Similarly the area to the right would be estimated only from cameras 1 and 2. (b) The
variation in depth due to perturbation along epipolar line e is greater than that caused by
a similar perturbation along €', as image 2 is more widely separated from the reference
image than image 1.

To improve the appearance of the reconstruction, if a depth estimate is within an
interval containing 0, its displacement is considered to be due to inaccuracies caused by
the image resampling and matching processes, and it is set to 0. The limits of this interval
are set to the depths obtained by perturbing the matched point, already lying on an epipolar
line due to the triangulation process, 1 pixel in either direction along its epipolar line and
triangulating again. In this way, similarly to [9], we obtain an idea of the uncertainty of
depth based on camera position (see figure 3(b)).
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4 Results

As this system is intended to augment the PhotoBuilder package, its major application
domain is refining models of approximately planar architectural scenes. We give here
two examples of our algorithm operating on sequences of images of such scenes. These
images were taken with a Fuji MX-700 digital camera, and each has a resolution of 640 by
480 pixels. Both results were obtained using only the initial estimates of P, generated by
the calibration algorithm. These scenes are problematic for many structure from motion
algorithms, because only minor depth variation is present.

Figure 4 illustrates the effect of our occlusion detection scheme on a three image
sequence of a stone wreath located outside Fitzwilliam Museum, Cambridge. Because
the right facing parts of the wreath are not visible from the viewpoint of camera 1, their
reconstruction based on this viewpoint is poor. Similarly the left facing regions are poorly
reconstructed from the viewpoint of camera 2. However the cumulative reconstruction is
accurate in all regions except where the top of the wreath joins the wall, which is not
visible from any viewpoint. These reconstructions are obtained by downsampling the
depth map and triangulating between the points to form a VRML surface. The final
reconstruction is texture mapped using the reference image. In future we hope to improve
the texture mapping algorithm so that parts of the scene not visible in the reference image
are rendered using an image in which they are visible.

Figure 5 shows five images of a gateway, the most significant features of which are
the central inset gate and a pair of shallow rectangular hollows to either side of it. Below
these images are four stages in the evolution of the intially planar surface as the parallax
map from each image is triangulated and incorporated in the depth estimate. Regions of
minor deviation from the plane, and the rectangular indentations which exhibit only grad-
ual depth variation, evolve gradually over the sequence. The left side of the gate, which is
occluded in images 1 and 2, is not accurately reconstructed until the incorporation of im-
ages 3 and 4. Although the right side of the gate is occluded and hence poorly estimated
in images 3 and 4, its cumulative estimate, shown in figure 5 (h) and (i), is not degraded.
Figure 6 shows two views of a realistic texture mapped reconstruction of the gateway.

5 Conclusion

This paper has presented a system comprising a novel combination of computer vision
techniques for the incremental refinement of planar model surfaces. Few images are re-
quired to obtain an accurate set of depth estimates, which greatly enhances the accuracy
and realism of the resulting reconstruction at very little cost to the user. No camera cali-
bration information is required.

Future development will focus on the complete automation of the algorithm and on
improving its accuracy. For instance we plan to use the intermediate depth maps to pre-
dict more accurately the location of each pixel in each newly incorporated image, which
will simplify the matching process and indicate the accuracy of the current structure es-
timate. It is anticipated that this system will be integrated into the PhotoBuilder package
to automatically refine the piecewise planar models which it currently produces, thus of-
fering a simple, convenient and computationally inexpensive system for the generation of
extremely realistic 3D models.
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(a) Reference Image (b) Image 1 (c) Image 2
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(d) Reconstruction from camera 1 only (e) Reconstruction from camera 2 only

(f) Fused reconstruction (g) Texture mapped reconstruction

Figure 4: Stonework wreath reconstructions, shown as untextured and (g) textured VRML
surfaces. Areas which are occluded from either viewpoint are reconstructed poorly from
that viewpoint, but the final reconstruction is accurate for regions visible from any view-
point.
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(a) Reference Image (b) Image 1 (c) Image 2
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(f) Surface after incorporating image 1 (g) Surface after incorporating images 1
and 2
- -
%;“’_’\
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(h) Surface after incorporating images (i) Surface after incorporating images 1,
1,2 and 3 2,3 and 4

Figure 5: The reference image and 4 other views of a gateway at Caius College, Cam-
bridge. The major features are the inset gate and a pair of rectangular indentations to either
side of it. Below these images are untextured VRML surfaces showing the evolution of
the surface as each depth map is incorporated.
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Figure 6: Two views of the refined planar model of the Caius gateway.
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