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Abstract

This paper casts the problem of point-set alignment via Procrustes analysis
into a maximum likelihood framework using the EM algorithm. The aim is
to improve the robustness of the Procrustes alignment to noise and clutter.
By constructing a Gaussian mixture model over the missing correspondences
between individual points, we show how alignment can be realised by ap-
plying singular value decomposition to a weighted point correlation matrix.
Moreover, by gauging the relational consistency of the assigned correspon-
dence matches, we can edit the point sets to remove clutter. We illustrate
the effectiveness of the method on matching stereograms. We also provide a
sensitivity analysis to demonstrate the operational advantages of the method.

1 Introduction

The problem of point pattern matching has attracted sustained interest in both the vision
and statistics communities for several decades. For instance, Kendall [6] has generalised
the process to projective manifolds using the concept of Procrustes distance. Ullman [14]
was one of the first to recognise the importance of exploiting rigidity constraints in the
correspondence matching of point-sets. Recently, several authors have drawn inspiration
from Ullman’s ideas in developing general purpose correspondence matching algorithms
using the Gaussian weighted proximity matrix. For instance Scott and Longuet-Higgins
[10] locate correspondences by finding a singular value decomposition of the inter-image
proximity matrix. Shapiro and Brady [11], on the other hand, match by comparing the
modal eigenstructure of the intra-image proximity matrix. In fact these two ideas provide
some of the basic groundwork on which the deformable shape models of Cootes et al [3]
and Sclaroff and Pentland [9] build. This work on the co-ordinate proximity matrix is
closely akin to that of Umeyama [15] who shows how point-sets abstracted in a structural
manner using weighted adjacency graphs can be matched using an eigen-decomposition
method. These ideas have been extended to accommodate parametererised transforma-
tions [16] which can be applied to the matching of articulated objects [17]. More recently,
there have been several attempts at modelling the structural deformation of point-sets. For
instance, Amit and Kong [2] have used a graph-based representation (graphical templates)
to model deforming two-dimensional shapes in medical images. Lades et al [7] have used
a dynamic mesh to model intensity-based appearance in images.
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Broadly speaking the aim of point pattern matching is to recover the transformation
between image and model co-ordinate systems. In order to estimate the transformation
parameters a set of correspondence matches between features in the two co-ordinate sys-
tems is required. In other words, the feature points must be labelled. Posed in this way
there is a basic chicken-and-egg problem. Before good correspondences can be estimated,
there need to be reasonable bounds on the transformational geometry. Yet this geometry
is, after all, the ultimate goal of computation. This problem is usually overcome by in-
voking constraints to bootstrap the estimation of feasible correspondence matches. If
reliable correspondences are not available, then a robust fitting method must be employed
[12, 11]. This involves removing rogue correspondences through outlier rejection.

The idea underpinning this paper is to provide a new framework for the maximum
likelihood alignment of point-sets which allows linkage between alignment and corre-
spondence. Specifically, we aim to realise iterative Procrustes alignment[6] using the EM
algorithm. The possibility of hidden or missing data provides a natural way of repre-
senting the unknown correspondences between individual points. In the maximisation
step of the algorithm, we align the points so that they minimise the weighted Procrustes
distance. In the expectation step the positional residuals are used to estimate correspon-
dence matching probabilities used in the weighting process. Editing to correct structural
errors in the point-sets can be performed on the basis of the consistency of the pattern of
matches. These three processes are interleaved and iterated to convergence.

Although the architecture of our method has much in common with the Procrustes
soft-assign method of Rangarajan, Chui and Bookstein[8], it is couched in a statistical
rather than an optimization framework.

2 Point-Sets

Our goal is to recover the parameters of a geometric transformation ®(") that best maps a
set of image feature points w onto their counterparts in a model z. In order to do this, we
represent each point in the image data set by a position vector ; = (x;,y;)? where i is
the point index. We will assume that all these points lie on a single plane in the image. In
the interests of brevity we will denote the entire set of image points by w = {w;, Vi € D}
where D is the point index-set. The corresponding fiducial points constituting the model
are similarly represented by z = {Z},Vj € M} where M denotes the index-set for the
model feature-points z;.

Later on we will show how the two point-sets can be aligned using singular value
decomposition. In order to establish the required matrix representation of the alignment
process, we construct two co-ordinate matrices from the point position vectors. The data-
points are represented by the following matrix whose columns are the co-ordinate position
vectors,

D= (w, Wy .. @p|) @)

The corresponding point-position matrix for the model is
M=(2 Z .. Zu|) 2)

One of our goals in this paper is to exploit structural constraints to improve the re-
covery of transformation parameters from sets of feature points. We abstract the repre-
sentation of correspondences using a bi-partite graph. Because of its well documented
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robustness to noise and change of viewpoint, we adopt the Delaunay triangulation as our
basic representation of image structure [13, 5]. We establish Delaunay triangulations on
the data and the model, by seeding Voronoi tessellations from the feature-points [1].

The process of Delaunay triangulation generates relational graphs from the two sets
of point-features. An example is shown in Figure 1. More formally, the point-sets are
the nodes of a data graph Gp = {D, Ep} and a model graph Gy = {M, Ejr}. Here
Ep CD xDand Eyf € M x M are the edge-sets of the data and model graphs.

3 Dual Step EM Algorithm

The aim in this paper is to show how the Procrustes alignment of the two point-sets can
be realised using the EM algorithm[4]. The ultimate goal of the alignment process is
to identify point-to-point correspondences between the data and the model. Moreover,
we are interested in the case where there are significant structural differences between
the two-point sets due to the addition of noise or the occlusion and drop-out of certain
feature-points.

The EM algorithm provides a natural framework for recovering the required corre-
spondences. The method is concerned with finding maximum likelihood solutions to
problems posed in terms of missing or hidden data. In the alignment problem it is the
correspondences which are missing and the transformation parameters that need to be
recovered. The utility measure underpinning the method is the expected log-likelihood
function. Under the assumption that the positional errors between the aligned point-
sets are Gaussian, then the maximum likelihood problem becomes one of minimising
a weighted squared error measure. The weights used to control the different positional
errors are in fact the a posteriori probabilities of the point correspondences. The EM al-
gorithm iterates between two interleaved computational steps. In the expectation step the
a posteriori correspondence probabilities are estimated from the current position errors by
applying the Bayes formula to the Gaussian distribution functions. In the maximisation
step the alignment parameters are estimated so as to maximise the expected log-likelihood
function. This is equivalent to minimisation of the weighted error measure. Here we re-
alise the maximisation step by adopting a matrix representation of the point-sets together
with their putative correspondence probabilities and applying singular value decomposi-
tion to recover the alignment parameters. In practice we iterate this so-called Procrustes
alignment on a weighted correspondence matrix.

3.1 Mixture Model

The idea underpinning the EM algorithm is to construct a mixture model over the hidden
data to explain the distribution of the observed data. The ultimate goal is the set of max-
imum likelihood parameters ® which explain the observed distribution of data. In our
alignment problem, the observed data are the position vectors belonging to the set w. The
parameters are the translation, rotation and scaling required by the Procrustes alignment
of the point-sets.

The method commences by assuming that the different observations are independent
of one-another. As a result we can factorise the joint conditional likelihood of the data
over the individual point position vectors, i.e.
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p(w|®) = ] p(i|@) (3)
i€D
The next step is to focus on the probability distribution p(;|®). Here we assume that
the observed data-point positions have arisen from the model-points via a measurement
process. However, the original model point is hidden from us. We must therefore entertain
the possibility that each data point may have originated via measurement from any of
the model-points. This situation is expressed probabilistically by constructing a mixture
model over the set of hidden model-data associations or correspondences. As a result, we
write
p(@i|2) = 3 plai]z), @i (4)
JEM
where p(w;|Z;, ®) is the probability distribution for the data-point position measurement
or observation ; to have originated from the model-point z’; under the set of alignment
parameters ®. The quantity 7; ; is the mixing proportion required for the model-point Z;
in explaining the observation ;.
With these ingredients, the complete likelihood function that has to be maximised is

=TI 3 vz, &)my 5)

i€D jeM

The idea underpinning the EM algorithm is to accommodate the hidden data, be re-
couching the maximisation of the likelihood function in terms of the expected log-likelihood
function. It was Dempster, Laird and Rubin [4] who originally showed that maximising
the expected value of the log-likelihood function under hidden or missing data, was equiv-
alent to maximising the following quantity

Q@@ =3 N P(z;|s;, @) In p(ii| 2, ) (6)
i€D jeM
According to this viewpoint the a posteriori probabilities available at iteration n of the
algorithm are used to compute the expectation value of the log-likelihoods of the missing
data at iteration n + 1.

3.2 Maximisation

To develop a useful alignment algorithm we require a model for the measurement process.
Here we assume that the observed position vectors, i.e. w;, are derived from the model

points through a Gaussian error process. Suppose that the revised estimate of the position

of the point w; under the set of alignment parameters ®(") is 1171(”).

Gaussian model of the alignment errors,

According to our

™) %)

1 1
(|5, @) = ——— exp|—=(Z; — @) 'S (2 — ]

2m\/|X] 5 ‘

where ¥ is the variance-covariance matrix for the point measurement errors. Here we
assume that the position errors are isotropic, in other words the errors in the z and y
directions are identical and uncorrelated. As a result we write ¥ = o2l where I is
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the 2x2 identity matrix. With this model, maximisation of the expected log-likelihood
function Q(®("+1)|®(™)) reduces to minimising the weighted square error measure

E=3 > &7 @ - a5 - ") ®)
i€DjeM

n+1)

J

dence probability P(Z;|w;, ®™). This is similar to the utility measure used by Rangara-

jan, Chui and Bookstein[8].

We would like to recover the maximum likelihood alignment parameters by applying
Procrustes normalisation to the two point-sets. This involves performing singular value
decomposition of a point-correspondence matrix. In order to develop the necessary for-
malism, we rewrite the weighted squared error criterion using a matrix representation.
Suppose that W (") is the data-responsibility matrix whose elements are the a posteriori
correspondence probabilities fi(z.). With this notation the quantity £ can be expressed in
the following matrix form

where we have used the shorthand notation fz( to denote the a posteriori correspon-

E =Tr[ MW ™ M| — 2rr[DCHDW W M) 4 Tr[D DT () pnt] - (9)

Since the first and third terms of this expression do not depend on the alignment of
the point-sets we can turn our attention to maximising the quantity

F =Tr[ D Ow ™ T (10)

where D("*1) is the revised matrix of point-positions which we aim to estimate via max-
imisation of £. This quantity can be thought of as a weighted measure of overlap or
correlation between the point-sets under the current alignment estimate. It is worth paus-
ing to consider its relationship with measures exploited elsewhere in the literature on point
pattern matching. The quantity M T D is simply the standard measure of overlap that is
minimised in the work on least-squares alignment [16]. The matrix W, on the other hand,
is just the inter-image proximity matrix used by Scott and Longuet-Higgins [10]. So, the
utility measure delivered by the EM algorithm plays a synergistic role. The inter-image
point proximity matrix weights the least-squares criterion.

The quantity F can be maximised by performing a singular value decomposition. The
procedure is as follows. The matrix D"+ W (™) AT is factorised into a product of three
new matrices U, V and A, where A is a diagonal matrix whose elements are either zero
or positive, and U and V' are orthogonal matrices. The factorisation is as follows

DLW T — gAVT (1)

The matrices U and V' define a rotation matrix © which aligns the principal component
directions of the point-sets M and D. The rotation matrix is equal to

e=vuT (12)

With the rotation matrix to hand we can find the Procrustes alignment which maximises
the correlation of the two point sets. The procedure is to first bring the centroids of the two
point-sets into correspondence. Next the data points are scaled to that they have the same
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variance as those of the model. Finally, the scaled and translated point-sets are rotated so
that their correlation is maximised.
To be more formal the centroids of the two point-sets are ,u%” = E(D) and pp =

n)

E(M). The corresponding covariance matrices are Z(g) = E((D™ — u(D )(D) —
u)") and Sar = B((M = 7 )M = ).
With ingredients the update equation for re-aligning the data-points is
(n+1) TT'ZM

G = g + mVUT(@(”) — ul™y (13)

3.3 Expectation

In the expectation step of the EM algorithm the a posteriori probabilities of the missing
data (i.e. the model-graph measurement vectors, Z;) are updated by substituting the re-
vised parameter vector into the conditional measurement distribution. Using the Bayes
rule, we can re-write the a posteriori measurement probabilities in terms of the compo-
nents of the corresponding conditional measurement densities

o p(;, Z|2™)

> ent s pld, 2y |8

P(Z}|w;, ®+Y)) = (14)

The mixing proportions are computed by averaging the a posteriori probabilities over the
set of data-points, i.e.

n 1 -
ol = B 3" Pz, ™) (15)
i€D

3.4 Structural Editing

The final step in the matching process is to edit the data point-set to remove unmatchable
points which are noise or clutter. The aim here is to measure the consistency of the
arrangement of correspondence matches on each neighbourhood of the Delaunay graph.
We meet this goal by comparing the matched edges of the data-graph with those in the
model graph.

In order to gauge the consistency of match, we represent the state of correspondence
match between the nodes of the data-graph and those of the model graph using a function
(™ . D — M. The statement f(") (i) = j means that the data-graph node i is matched
to the model-graph node j at iteration n of the algorithm. The matches are assigned on
the basis of the maximum a posteriori correspondence probabilities. In other words,

(") (§) = 214z &)
(@) argjr,nE%P(zjlme ) (16)

The pattern of the assigned matches is used to compute a probability of compatible
correspondence arrangement. To compute this probability, we appeal to the model of
structural pattern error recently reported by Wilson and Hancock [18] for graph-matching
by discrete relaxation. Accordingly, we assume that the probability of erroneous edge
insertion is P,. By counting the number of consistently matched edges in the neighbour-
hood of each node we can the measure of consistency of correspondence match. The
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Figure 1: An example of Delaunay graph editing by node deletion. The original graph is
shown on the left, while the edited graph resulting from a node deletion is shown on the
right.

number of consistently matched edges for the correspondence match f (™) (i) =7is

Hi’j = Z (]. — 61"1'!) (17)

(i,i')€ED
where the consistency of each edge is measured by the quantity

o prr
€iir = {1 lf(Jaf(Z )) € By (18)
0 otherwise
With this consistency measure to hand, the probability of compatible correspondence

match is
exp [—,UH i, j:|

X\ =

19)

> jrem €XP [—HHi,j']
where 4 = In 1;,P <. This probability is used to make decisions concerning the deletion
of nodes from the data graph that fail to find a consistent correspondence match. The
node ¢ is deleted if XEZ) < P,. Once a point has been deleted the remaining points are
retriangulated. This process is illustrated in Figure 1.

4 Experiments

In this section we provide some experimental evaluation of the new alignment method.
This is divided into two sections. First, we provide a simulation study to provide com-
parative sensitivity characteristics. Secondly, we provide some real world experiments on
stereo images.

To evaluate the robustness of the novel approach, we furnish a sensitivity study. This
compares the new iterative alignment method with the following three alternatives:

o The first method(Refered to as "Weight+SVD”) is similar to that of Scott and
Longuet-Higgins. This performs the singular value decomposition W (®) = U, sAgVE
on the initial inter-image weight matrix. Suppose that Ag is the matrix obtained by
setting the diagonal elements of Ag to unity, then the Scott and Longuet-Higgins
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EM + Weight + SVD e EM + Weight + SVD s Procrustes =—
Weight + SVD -« Weight + SVD = Graph editing -

35 Single SVD s 25 Single SVD s~
PCA —— PCA ——

Correspondence error(Percentage)

0 2

4 6 8 10 12
Clutter level(Percentage)

(a) Alignment error as a func- (b) Alignment error as a func- (c) Comparison of the corre-
tion of noise-variance on the tion of the fraction of struc- spondence error
point-sets tural error

Figure 2: Sensitivity study

algorithm delivers an updated matrix of correspondence weights W = UsA sVE.
The updated weight matrix can be used to align the point-sets using the method
outlined earlier in this paper.

e The second algorithm(Refered to as ”Single SVD”) performs the singular value de-
composition DM T = UAVT to find the rotation matrix © = VU7 that maximises
the unweighted point correlation 7r[DMT]. In other words, the algorithm is an un-
weighted and non-iterative or single-shot version of the EM algorithm presented in
this paper.

o The third method(Refered to as "SVD”) is based upon aligning and scaling in the
principal component axes of the two point-sets.

The data used in our study is furnished by randomly generated point-sets. We have
added two types of noise to the point-sets. Firstly, we have added Gaussian measurement
errors to the positions of the points. The position errors are isotropic and of zero mean.
The parameter of the noise process is the standard deviation of the measurement error.
The second type of noise is structural error. Here we have added controlled fractions
of clutter points at random locations. We have measured the accuracy of alignment by
computing the root-mean-square (RMS) error between the final point positions and the
corresponding ground truth model point.

Figure 2a shows the RMS error as a function of the standard deviation of the point
position error. The main point to note from this plot is that for all four algorithms the RMS
error increases linearly with the noise standard deviation. However, for the new algorithm
(EM+Weight+SVD-shown as circle points), the rate of increase of the RMS error is much
lower than the remaining three algorithms. In other words, the new algorithm gives more
accurate alignments.

Figure 2b shows the fraction of points in correct correspondence as a function of the
fraction of added clutter. The main point to note for this plot is that the new method
(EM+Weight+SVD - shown as circles) is considerably more accurate in locating corre-
spondences. Moreover, the two SVD-based methods perform only marginally better than
the PCA alignment,
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Figure 4: Correspondence after graph editing

Finally, we investigate the effect of removing the graph-editing step from our algo-
rithm. Figure 2c shows the comparison of the percentage of correspondence errors as a
function of the percentage of added clutter. The dashed curve is the result obtained when
editing is used, while solid curve is the result obtained when editing is omitted. The graph
editing method always improves the performance by a good margin.

Finally, we provide some examples on real-world data. Here we use pairs of stereo
images of an office scene to test the proposed algorithm. Figure 3 shows the correspon-
dences using conventional Procrustes alignment. There exist significant correspondence
errors. When the EM method is used, most of the false correspondences are removed
(Figure 4).

5 Conclusions

In conclusion, we have shown how the process of Procrustes alignment can be formulated
as a maximum likelihood estimation problem using the EM algorithm. This interpretation
leads to a new point-set similarity measure in which point correspondence probabilities
weight the standard least-squares point overlap distance. In other words, our new mea-
sure of point-set similarity combines the ideas already developed by Scott and Lonquet-
Higgins, and Umeyama in a single statistical utility measure. Moreover, our new method
both allows structural constraints to be imposed on Procrustes alignment and provides a
framework for point-set editing to remove noise and clutter. The method leads to more
accurate point-set alignment.
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