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Abstract

In recent years there has been an increased interest in the modelling and
recognition of human activities involving highly structured and semantically
rich behaviour such as dance, aerobics, and sign language. A novel approach
is presented for automatically acquiring stochastic models of the high-level
structure of an activity without the assumption of any prior knowledge. The
process involves temporal segmentation into plausible atomic behaviour com-
ponents and the use of variable length Markov models for the efficient rep-
resentation of behaviours. Experimental results are presented which demon-
strate the generation of realistic sample behaviours and evaluate the perfor-
mance of models for long-term temporal prediction.

1 Introduction

In recent years, challenging problems such as human-computer interaction, automated vi-
sual surveillance and the realistic animation of human motion, have led to an increased in-
terest in providing machines with the ability to learn and use models of human behaviour
[14, 3, 13, 8]. Of particular interest is the modelling and recognition of human activities
involving highly structured and semantically rich behaviour such as dance, aerobics, and
sign language [6, 17, 18].

In this paper an activity is viewed as a sequence of primitive movements with a high-
level structure controlling the temporal ordering. Others have used a similar approach to
perceiving human activities. Bobick and Ivanov [4] used a context-free parsing mecha-
nism together with HMMSs modelling low-level behaviour primitives for the recognition of
activities, using a hand-coded stochastic context-free grammar to represent a priori knowl-
edge of the high-level structure of an activity. Bregler [5] used a framework for the prob-
abilistic decomposition of human dynamics at different levels of abstraction, modelling
complex gestures as successive phases of simple movements using an HMM.

Unfortunately, HMMs do not encode high order temporal dependencies easily. Lo-
cal optima are frequently encountered by iterative optimisation techniques when learning
HMMs with many free parameters, and thus model topology and size are often highly con-
strained prior to training. We propose the use of variable length Markov models (VLMM)
[15, 9] as a simple, yet powerful and efficient mechanism for capturing behavioural de-
pendencies and constraints.

Two approaches are described for modelling behaviour using VLMMs at different tem-
poral scales and the learnt behaviour models are used to demonstrate both the generation
of realistic sample activities and the robust prediction of future behaviour.
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2 Augmented configuration space

Behaviours are viewed as smooth trajectories in an augmented configuration space which
describes both d-dimensional object configuration C; and its first derivative C;. The in-
clusion of derivatives helps resolve ambiguity and facilitates the use of the models in the
performance of generative tasks.

The first stage of the modelling process involves the acquisition of sequences, F;, of
regularly sampled augmented configuration vectors, F; € [0, 1]??. Each sequence describes
the temporal evolution of a behaviour:

F ={Fo, Fi, ..., Fu}, ey

where .
Fl — (Cla kCl) ) (2)

and A balances the contribution of derivatives when using the Euclidean distance as a dis-
similarity measure.

In order to generate a discrete representation of behaviours, each augmented configura-
tion vector F; is replaced by the nearest prototype p;, froma finite set P = {po, p1, ..., pn}
of prototypical augmented configurations. Prototypes are derived using robust vector quan-
tisation (see Johnson and Hogg [13] for details), and are further sub-sampled to produce
a more uniform distribution of prototypes over the space of observed behaviours. Each
behaviour is therefore represented by a sequence of prototypes {p,-o, Pis -5 Piy, }

2.1 Experimental data

For the experiments described in Sections 3 and 4, individuals performing exercise rou-
tines were tracked using a simple contour tracker [12, 1]. Object configuration is repre-
sented by the n control points of a closed uniform B-spline approximating the silhouette
boundary. Control points are evenly spaced around the silhouette and ordered relative to
a consistent point of reference (Figure 1(a)).

Integration of data from different training sequences is enabled by transforming control
points into object centred coordinates and normalising such that each component of the
transformed control points lies in the interval [0, 1]. The evolving silhouette boundary is
thus represented by configuration vectors C, = (x1(¢), y1(¢), ..., (), ya(t)) € [0, 1]*"

(ie. d = 2n).
W Exercise 1
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Figure 1: (a) Spline-based shape representation (b) Structure of exercise routine.
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Training data was generated from a single sequence of an individual performing an ex-
ercise routine. This exercise routine comprises two exercises, each repeated four times and
followed by four repetitions of a sub-exercise (see Figure 1(b)). The shape was represented
by B-splines with 32 control points resulting in 64-dimensional configuration vectors C;.
The training set F $"2P® of 128-dimensional augmented configuration vectors F, was gen-
erated using a scaling factor A = 10 and a set P*P%P¢ of 71 prototypes in the augmented
configuration space was learnt from the training data set.

3 Modelling behaviour using variable length Markov
models

We are interested in building models of behaviour which are able to support both recog-
nition and generative capabilities such as the prediction of future behaviours or the gen-
eration of realistic sample behaviours. Since the description of behaviours as ordered se-
quences of prototype vectors in the augmented configuration space is a discrete representa-
tion, the addition of generative capabilities can be achieved during a further learning phase
in which memory conditioned probabilities of transitions between prototypes are estimated
using a variable memory length Markov model (VLMM) [9].

3.1 Variable length Markov models

VLMMs have been used successfully for text compression [7, 2] and more recently in lan-
guage modelling to improve the accuracy of speech and handwriting recognisers [15, 9,
10]. Their advantage over a fixed memory Markov model is the ability to locally opti-
mise the length of memory required for prediction. This results in a more flexible and
efficient representation which is particularly attractive in cases where we need to capture
behavioural dependencies at a large temporal scale.

Assume w is a string of tokens used as a memory to predict the next token a' accord-
ing to an estimate P(a'|w) of P(a'|w). The main idea behind the variable length modelling
method is that if the output probability P(a|aw) that predicts the next token ' is signifi-
cantly different from P(a’|w), then the longer memory aw may be a better predictor than w.
The Kullback-Leibler divergence [15] is used to measure the additional information that
is gained by using the longer memory aw for prediction instead of the shorter memory w:

AH(aw,w) = P(aw) Zf’(a'|aw) log———— 3)

If AH(aw, w) exceeds a given threshold €, then the longer memory aw is used, otherwise
the shorter memory w is considered sufficient for prediction.

The transition probabilities and priors are derived from estimates of P(ay|a1a; . . .a,—1)
and P(aja, . . .ay) calculated for various values of n (n = 1,2,...,N). The estimates are
given by:

v(ajay .. .ay—1ay)

f’(a,,|a1a2...a,,_1) Wararan 1) |
Oy

“

Blaras. .ay) — W )
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where v(aja,...a,) is the number of times the string of tokens a;a; . . .a, appears in the
training data and vy is the total length of the training sequences.

The training algorithm involves building a prefix tree [9] where each node corresponds
toastring up to a predetermined length N. The transition frequencies are counted by travers-
ing the tree structure repeatedly with strings of length N where the strings are generated by
sliding a window of fixed length N along a training sequence of tokens. Transition prob-
abilities are computed using equation 4 and a pruning procedure is then applied while the
prefix tree is converted to a prediction suffix tree [15]. For each node n,, in the prefix tree,
a corresponding node 7 in the suffix tree is created if and only if the Kullback-Leibler di-
vergence between the probability distribution at n,, and the probability distribution at its
ancestor node in the prefix tree is larger than threshold €. Finally, the suffix tree is con-
verted to an automaton representing the trained VLMM. A more detailed description on
building and training variable length Markov models is given by Ron et al. [15].

Thus, a VLMM is equivalent to a Probabilistic Finite State Automaton (PFSA) rep-
resented by M = (Q, %, 1,v,m) where X is a finite alphabet —the set of tokens— and Q is
a finite set of model states. Each state corresponds to a token string of length at most N,
(N > 0), representing the memory for a conditional transition of the VLMM. The transition
Sunctionist: Qx X — Qandy: Q x X — [0, 1] is the output probability function represent-
ing the memory conditioned probabilities of the next token a € X. Finally, ®: Q — [0, 1]
is the probability distribution over the start states. The functions y and 7 are such that for

every ¢ € 0, TuexW(g,a) = 1 and Yo (g) = 1.

3.2 Modelling behaviour at the prototype level

In our first approach, temporal dependencies in behaviour are represented by a VLMM
over the prototypes. The training sequences F; are converted into sequences of prototypes
by observing the closest prototype, in a nearest neighbour sense, to the current training
vector at each time instant. Only transitions between different prototypes are considered
for training. The output sequences are used to train a VLMM represented by the PFSA

M, = (Qp,P .1, ¥p, ).

3.2.1 Behaviour Generation

The trained model M, represents the learnt behaviour and has generative capabilities. Be-
haviour generation is achieved by traversing the PFSA, selecting either the most likely
transition (maximum likelihood behaviour generation) or sampling from the transition dis-
tribution (stochastic behaviour generation) at each state, and emitting the corresponding
prototype vectors. This results in an ordered set G of prototype vectors p,, which are the
output of the transitions ¢,41 = T,(¢,, Py, ) between states g, g,4+1 € Op.

The time interval between generated prototypes is initially unspecified and in order
to generate an output sequence of vectors in the augmented configuration space at video
frame rates, an interpolant of G must be sampled. Since non-linear changes may occur be-
tween prototypes separated by large time intervals, an approximation for the time interval
is found and a Hermite interpolation is used (see [12] for details). An ordered set of vec-
tors in the augmented configuration space can be produced by sampling this interpolant at
data frame rate.
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3.2.2 Prediction of future behaviour

To use the model M), for behaviour prediction, it is first necessary to locate the current
model state. Since model states may encode a history of previous behaviour, the model
is initially used in a recognition mode, accepting successive prototypes representing ob-
served behaviour and making the corresponding state transitions. Having located the cur-
rent model state, prediction of future behaviour can be achieved using the model either as
a stochastic or a maximum likelihood behaviour generator.

A VLMM model needs to be able to handle the problem of unseen events — cases where
token sequences which might have not appeared previously in the training corpus, appear
during the prediction process. Therefore, if the model M, is presented with a prototype
p; € P while is in a state which emits this prototype with probability zero, we return to
the initial model state, lose all the previous memory and predict p; with the prior probabil-
ity f’(p,-). This backing-off method is simple but effective, although other more complex
methods of handling unseen events could be employed [11].

3.2.3 Assessing predictor performance

For each prediction model a set of root mean square (RMS) errors are calculated to quantify
the mean performance in predicting the value of the output vector in configuration space
on each future time instant:

n _ E3 2
£y = ¢Zi=1 Ciir Ct+T|j’ ©

n

where the error in predicting forward by T time steps is averaged over predictions gener-
ated on every frame of every test sequence and Cj ;- denotes the ground truth vector in
configuration space at time 4 T as given by the test data. Errors are only updated if both
a prediction and the ground truth exist for the particular 7.

The mean performance of the models should represent a probabilistic weighting of the
errors given by all possible predictions. In general, it is not possible to enumerate the en-
tire set of possible predictions from a particular model state due to the possibility of cy-
cles within the transition structure. Instead, mean performance is calculated using Monte
Carlo simulation, generating a large number of stochastic predictions on each frame and
allowing their relative frequency to provide probabilistic weighting within the calculation
of RMS errors. For the experiments presented in this paper, 50 stochastic predictions were
generated on each frame.

3.24 Experiments

Using the set of 71 prototypes P2 (see Section 2.1) in the augmented configuration

space as an alphabet, variable length Markov models have been trained to capture activ-
ity behaviour for different values of memory length N. A test sequence of an individual
performing an exercise routine is used to demonstrate predictor performance. The test se-
quence comprises the same two exercises and sub-exercises as the ones in the training data
but in this case each exercise and sub-exercise is repeated three times.

Figure 2 demonstrates predictor performance of the variable length behaviour model
M, for various values of N where N is the maximum possible length of memory for each
model state. For N equals 4, 14 and 19 a VLMM model with 113, 232 and 265 states
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respectively was learned using in all cases a value € = 0.0001. Each plot in the graph
demonstrates mean predictor performance over arange t+ 7T (1 < T < 70) of future time
instants, averaged over all stochastic predictions for all frames in the test data set.

1

124 VLMM WITH N=14 -
VLMM WITH N=19 ---

104
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Figure 2: Behaviour prediction results using prototypes as alphabet.

As can be seen from the prediction graph, substantially better results are obtained in
comparison to a first order Markov model. Learning temporal behaviour dependencies at
the prototype level in the augmented configuration space using a variable length Markov
model results in an efficient behaviour model representation that captures accurately lo-
cal behaviour dependencies and has good generative capabilities. However, in order to
capture more of the large scale structure of an activity and thus infer possible higher level
syntactic information, a hierarchical approach in behaviour modelling as described in the
next section can yield better results.

4 Learning structured behaviour models

Motionin human activities has different characteristics at different time scales, usually car-
rying syntactic and semantic information at larger temporal scales. Capturing the variabil-
ity of behaviour at different temporal scales could be facilitated by using multiple memory
mechanisms, thus providing a more powerful means of modelling structured and seman-
tically rich behaviours of human activities.

In this section a hierarchical memory mechanism is proposed that has a detailed history
for recent past behaviour together with a history of important states or simple movements
performed during the long term past behaviour. Using such a mechanism, it is possible
to capture the larger scale temporal dependencies and therefore infer possible high level
syntactic or semantic information about the studied behaviour.

4.1 Temporal segmentation

Temporal segmentation into plausible atomic movements involves identifying suitable break
points at which to partition an activity. Given the physical constraints posed by the human
body, any change in the type of human movement usually causes dips in velocity. We wish
to exploit this by using minima in the magnitude of configuration change as clues for per-
forming semantic temporal segmentation.
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Activity behaviour, as described in Section 2, is represented by a sequence of pro-
totypes in the augmented configuration space, describing the temporal evolution of be-
haviour. We use the magnitude of the first derivative C; of a prototypical object configu-
ration to identify a subset of prototypes that could represent suitable segmentation points
of activity behaviour in the augmented configuration space. We call this the set of key pro-
totypes K :

K:{kl,kz,...,kk_l,kk}cp. @)

A threshold value is chosen by inspection and prototypes with first derivative magnitude
below this threshold are chosen as key prototypes. These are then utilised to facilitate the
learning of larger scale temporal dependencies in activity behaviour.

4.1.1 Atomic behaviour components

Having identified a set of key prototypes, a set of atomic behaviour components o; is ac-
quired, where each o;;; represents the range of behaviour observed between key prototypes
k; and k; for i # j. Each atomic behaviour component ¢;;; comprises a set of m template
sequences (xﬁj, 1 <1< m, where m is, in general, different for each atomic behaviour com-
ponent. Each such template is an ordered set of n augmented configuration prototypes

OLéi: {pua Py - pln}’ ®

where n is, in general, different for each template sequence.

Template sequences are generated from the training corpus via a process of sequence
clustering and merging. Initially, the set of all training sub-sequences spanning the transi-
tion between prototypes k; and K; is acquired. This set is then partitioned into a number
of clusters of self-similar sequences using dynamic time warping [16] to assess sequence
similarity. Finally, a single template sequence is generated from each cluster via a process
of sequence re-sampling, averaging, and re-quantisation.

The relative probability P(co! Y P(ol ;) = 1, of each template sequence within the
atomic behaviour component o;; is derived from the training corpus by observing the rel-
ative frequency with which the templates are matched.

4.2 Inferring a higher-level behaviour grammar

Temporal segmentation into plausible atomic behaviour components enables the learn-
ing of a higher level behaviour model that efficiently captures temporal ordering and con-
straints between constituent atomic behaviour components. Thisis achieved usinga VLMM
to capture the memory conditioned probabilities of transitions between atomic behaviour
components. For convenience, the VLMM M, = (O, K | T, ¥, ;) is trained using the set
of key prototypes as an alphabet.

Although key prototypes are used as the alphabet, the memory conditioned probabil-
ities of transitions between atomic behaviour components are implicit within the model.
Suppose Py k(k.,'|sk,-) denotes the probability of observing key prototype k; conditioned
on the observation of history sk;, where s denotes a key prototype history. Since a;; is
the atomic behaviour component representing the transition between k; and k;, clearly
Py, (0i;]sk;) = Py, (Kk;|sk;). Within such a behaviour model, the probability Py, ((xfj|sk,-)

of observing template sequence (xfj,

tory sk;, is given by:

conditioned on the observation of a key prototype his-

PMk((xfj|sk,-) = P((xfj)PMk((x,-.,Wsk,-). 9)
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Figure 3 illustrates part of a sample VLMM encoding the high-level structure of a be-
haviour. Also illustrated is the sub-model of an atomic behaviour component defined be-
tween two key prototypes that is implicitly built within the high-level model.

Figure 3: Structured behaviour model

4.3 Behaviour generation

The learnt structured behaviour model has stronger generative capabilities compared with
the model in Section 3.2.1. This is due to the fact that temporal behaviour dependencies are
encoded at a higher level offering a more powerful, longer duration memory mechanism.

Behaviour generation is achieved by traversing the model’s automaton My, generating
a key prototype at each step and replacing each k;k; subsequence with a k,-(xﬁ jKj subse-

quence. The choice of template (xf ; representing the atomic behaviour o; is achieved by
either choosing the template that maximises equation 9 or sampling from the set of possi-
ble templates (xf i

Entirely hypothetical sequences can be generated using the start state distribution i, to
select an initial model state. The selection of the start state is based on either sampling from
the start state distribution or identifying the most probable state. The start state distribution
is approximated by the relative frequency of starting at a particular state of the VLMM
model in the training data.

4.4 Prediction of future behaviour

In order to use the model My, for behaviour prediction, it is necessary not only to locate the
current model state (as in section 3.2.2), but also to identify the atomic behaviour template
currently being observed and to locate the current position within this template. Once the
atomic behaviour has been found, the subsequent model state is implicitly identified.

Suppose that, at time ¢, it has been established that the current state of the model M
is g, having memory sk;, and that the prototype sequence O, = {01,05,...,0,_1,0,} has
been observed since the last observed key k;. In order to select the subsequent model state,
it is necessary to identify the atomic behaviour template currently being traversed.

A Bayesian approach is taken where the estimated transition probabilities of the learned
model My, are used as priors. The posterior probability that atomic behaviour template (xf j
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represents the observation sequence at time ¢, taking into account the history of the high-
level behaviour model, is approximated by:

P(0f;|0y, ski) o< P(O; |t} )Py, (04 sK;), (10)

where Py k((xf ;|sk;) is given by equation 9 and P(O|o! ;) is the likelihood of template o ;
giving rise to the current observation sequence.

All the atomic behaviour template sequences from all the possible atomic behaviour
components defined from the last observed key prototype k; to any other key prototype
k, are considered. For each such template sequence (qu, a position & < n is found such
that the distance or the cost to align {p,,,py,, - ~,P1§} with {01,05,...,0,} is minimised
using dynamic time warping. This minimum cost is denoted by ¢;(i, g, r). Utilising the cost
function, itis possible to approximate the likelihood P(O; |t} ;) with the relative probability

of atomic behaviour template (xf ; giving rise to the observation sequence O;:

_ Ct (l ’ J ’ l)
Zq,rcl(ia q, r) .

Selecting the atomic behaviour template for which equation 10 is maximised identifies
the subsequent key prototype Kk ; and thus the subsequent state of the VLMM.

Unseen events are handled by detecting cases in which the maximum probability is
less than a threshold 0. In these cases, we lose all previous history of the high-level be-
haviour model and predict the next key prototype using only the likelihood function given
by equation 11.

Having located the next state g, of the VLMM model M, and the position & within
the atomic behaviour template currently being traversed, generation of future behaviour is
possible. The generated behaviour comprises the remaining template behaviour sequence
{0;; 150542, -, 01, o, } and the behaviour generated from the state g1 using the model

« either as a stochastic or a maximum likelihood behaviour generator as described in the
previous section.

P(O,]ay;) = 1 (11)

FIRST ORDER MARKOV MODEL ——
VLMM OVER PROTOTYPES, N=19 ----

STRUCTURED BEHAVIOUR MODEL, N=6 -

STRUCTURED BEHAVIOUR MODEL, N=§ -~
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Figure 4: (a) Behaviour extrapolation (b) prediction results.

Figure 4(a) illustrates an example of maximum likelihood future behaviour extrapola-
tion at selected time instants during the generation of a sample exercise routine. In each
figure, recent behaviour is illustrated by a set of filled contours, the shade of which indi-
cates recency, the lightest being the current shape. The first 12 frames of each extrapolation
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are illustrated by a set of unfilled contours overlaying the recent behaviour, the shade of
which indicates the progression of behaviour, the lightest being the furthest advanced.

4.5 Experiments

Using the training data and the set of prototypes P $"2P° described in Section 2.1, structured

behaviour models have been learned with VLMMs capturing the structure of activity at a
higher level using atomic behaviours as an alphabet. From the set of 71 prototypes P $hape,
5 prototypes have been identified as key prototypes and 8 atomic behaviour components
representing the range of behaviour between key prototypes have been learned. VLMMs
M, were trained using memories of maximum length 6 and 8 with a threshold € = 0.0001,
resulting in models with states 35 and 45 respectively. The test sequence from section 3.2.4
is again used here to assess prediction performance.

Figure 4(b) illustrates predictor performance using the learned structured behaviour
model for various values of N. The performance of the behaviour model described in sec-
tion 3.2. is also illustrated for comparison, and the structured behaviour models can be
seen to give consistently better prediction, clearly indicating the increased ability of the
model to encode the complex, long-term temporal dependencies.

5 Conclusions

Two novel methods have been proposed for the automatic acquisition of statistical models
for structured and semantically rich behaviours. The use of variable length Markov mod-
els provides an efficient mechanism for learning complex behavioural dependencies and
constraints.

Capturing behaviour at a low level using a VLMM with prototypical configurations
as an alphabet, results in a model that accurately encodes local behaviour dependencies.
However, such a model is unable to capture dependencies at multiple temporal scales. Us-
ing a VLMM at a higher level of abstraction, with constituent atomic behaviours as an al-
phabet, it is possible to automatically infer a stochastic model of the high-level structure of
a behaviour. The learned structured behaviour model encodes behavioural dependencies
at two temporal scales thus providing a more powerful model.

Both models have good generative capabilitites and can be utilised for behaviour recog-
nition, for the automatic generation of realistic object behaviours and for improving the
robustness and efficiency of object tracking systems.
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