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Abstract

We present a method for self-calibration of a camera which is free to rotate
and change its intrinsic parameters, but which cannot translate. The method
is based on the so-called infinite homography constraint which leads to a
non-linear minimisation routine to find the unknown camera intrinsics over
an extended sequence of images. We give experimental results using real
image sequences for which ground truth data was available.

1 Introduction

Camera calibration has always been the subject of research in the field of machine vision,
however it was only relatively recently that the possibility ofself-calibrationof a camera
simply by observing an unknown scene was realised and explored. The first major work
to consider the problem was [3], which showed that self-calibration was theoretically and
practically feasible for a camera moving through an unknown scene with constant but
unknown intrinsics. Since that time various methods have been developed to deal with
different situations. Table 1 summarises the major contributors to date.

In this paper we address one of the few cases which has not yet been explored, that
of a stationary camera which may rotate and change its intrinsics. This lack of attention
is somewhat surprising since this situation is one which occurs frequently in a variety
of circumstances: surveillance devices and cameras used for broadcasts of (for example)
sporting events are almost invariably fixed in location but free to rotate and zoom, and
hand-held camcorders are very often panned from a single viewpoint. Note that although
we address the case where the camera undergoes pure rotation (i.e. about its optic centre),
in practice the method is applicable whenever the rotation arm is very small relative to the
distance of the scene.

Our work is most closely related to the works of Hartley [4] and Pollefeys et al. [10],
but differs from the former in that we consider the case of varying rather than fixed in-
trinsics, and from the latter in that we consider pure rotations, a case not handled by that
work.

The paper is organised as follows. We begin with a description of the camera model
(section 2), then derive a constraint on the dual of the image of the absolute conic, which
forms the basis of our approach (section 3). We relate our work to [15, 10] in section
3.1. Readers familiar with the theory in [4, 7, 15, 10] may well be able to skip sections
2 – 3 and move directly to sections 4 and 5 which respectively describe the algorithm for
self-calibration and experiments on real imagery.
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Constant intrinsics Varying intrinsics

Known rotation
McLauchlan and Murray
[9], Stein [14], Du and
Brady [2]

—

Unknown rotation
Hartley [4], Zissermanet
al. [16]

*

Unknown general
motion

Maybank, Faugeraset al.
[3, 8], Triggs [15], Polle-
feys et al. [11], Heyden
and Aström [5]

Heyden and Astr¨om [6],
Pollefeyset al. [10]

Table 1: A summary of some of the best work done on camera calibration from unknown
scenes. The (*) indicates our contribution.

2 Camera model

The projection of scene points onto an image by a perspective camera may be modelled
by the equationx = PX, wherex = [x y w]

> are the image points in homogeneous
coordinates,X = [X Y Z 1]> are the world points andP is the3� 4 camera projection
matrix. The matrixP is a rank-3 matrix which may be decomposed asP = K [Rj � Rt],
where the rotationR and the translationt represent the Euclidean transformation between
the camera and the world coordinate systems and the matrixK is an upper triangular matrix
which encodes the internal parameters of the camera in the form

K =

2
4�u k u0
0 �v v0
0 0 1

3
5 : (1)

The elements�u and�v represent the focal length of the camera expressed in horizontal
and vertical pixel units respectively. The aspect ratio isr = �v=�u. The principal point is
(u0; v0) andk is a skew parameter which is a function of the angle between the horizontal
and vertical axes of the sensor array.

In this paper we will address the problem of computing the calibration matrix of a
stationary camera undergoing pure rotation with vaying internal parameters. If we choose
the origin of the coordinate system to be the optic centre of the camera, common to all
views, we may write the projection matrices in the form

Pi = Ki [Rij0] ; (2)

whereKi is the calibration matrix for each view andRi describes the orientation of the
camera with respect to the chosen reference frame. Under such circumstances, a world
point X = [X Y Z 1]

> is mapped onto the image pointx = Ki [Rij0] [X Y Z 1]
>

=
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KiRi [X Y Z]>. Note that since the fourth column of the projection matrix is always
zero, the last coordinate of the world pointsX is irrelevant, so we writeX = [X Y Z]

>,
and the mapping of world to image points may be conveniently expressed by the3 � 3
projective transformationPi = KiRi.

3 Rotation of a stationary camera

In this section we prove an extension to Hartley’s so-calledinfinite homography constraint
[4], in which we consider a camera with changing intrinsics. In particular we show that
the dual of the image of the absolute conic!� is related between viewsi andj by the
following equation:

!
�

j = Hij!
�

i H
>

ij ; (3)

whereHij is the homography that maps corresponding points from viewi to j. This result
can also be found in [7], but was not used for the same purpose as in our work.

To begin the proof, let the world coordinate system be aligned with the camera in the
first frame. We may then write the projection matrices for the different views as

P0 = K0 Pi = KiRi: (4)

Given a 3D world pointX, its projections onto two different images will bexi = KiRiX

andxj = KjRjX, so eliminatingX yields the transformation relating corresponding
points

xj = KjRjR
�1

i K
�1

i xi (5)

Therefore, in the case of a stationary camera there exists a 2D homography which maps
corresponding points in two views:

Hij = KjRijK
�1

i : (6)

Hij is in fact the infinite homographyH1 between viewsi andj, i.e. the point homography
between image planes induced by the plane at infinity. Therefore, in the case of a rotating
camera the infinite homography is an observable inter-image homography which may be
computed directly from point correspondences. Note that for a camera with fixed intrinsic
parametersH1 is a conjugate of a rotation matrix and self-calibration is straightforward
using Hartley’s method [4].

SinceRij = K
�1

j HijKi is a rotation matrix, it satisfies the property thatR=R�>, leading
to

Kj
>H
�>

ij K
�>

i = K
�1

j HijKi )
�
KjKj

>
�
= Hij

�
KiKi

>
�
Hij

>:

Noting thatKiKi> is the dual of the image of the absolute conic (DIAC)!
�

i we may write

!
�

j = Hij!
�

i Hij
> (7)

which encodes theinfinite homography constraintin the case of a stationary rotating
camera with varying intrinsic parameters. This equation imposes a constraint on the
transformation of the DIAC between frames and constitues the basis of our approach
to self-calibration.
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3.1 Self-calibration using the degenerate dual space disc quadric

In [15], Triggs introduced a clean way of expressing the self-calibration problem (in his
case for a moving camera with fixed but unknown intrinsics) in terms of constraints on a
quadric inP3 which is invariant under Euclidean transformations. In this section we show
that for a rotating camera with varying intrinsics, we can derive a similar constraint, and
that it is equivalent to the infinite homography constraint.

The quadric in question is the degenerate dual space disc quadric whose rim is the
absolute conic in the plane at infinity. It is a projective object in 3D space which encodes
metric structure and which is easier to use than the absolute conic. The representation of
the quadric in a Euclidean frame is given by the rank-34� 4 symmetric matrix:

Q
�

1
=

�
I 0
0 0

�
(8)

It is easy to verify that any Euclidean transformationT mapsQ�
1

onto itself: TQ�
1
T> =

Q�
1

. The self-calibration method comprises locating the quadric in an initial projective
frame and then using it to recover the projective to Euclidean transformation for the struc-
ture. Q�

1
is recovered using itsprojection constraint: Q�

1
projects onto the dual of the

image of the absolute conic (DIAC)

!
�

i = KiKi
> = PiQ

�

1
Pi
> (9)

independently of the projective basis chosen to express the projection matricesPi.
While Triggs introduced this constraint in the context of self-calibration of a moving

camera with fixed intrinsics [15], Pollefeyset al. have recently extended the method to the
case where the camera parameters may vary [10]. We now derive theprojection constraint
of Q�

1
for the case of a stationary rotating camera with varying intrinsic parameters.

Without loss of generality we may choose the first frame to be the projective basis in
which the camera matrices are expressed. Therefore

P0 = [Ij0] ; Pi = [Hij0] ; Q
�

1
=

�
K0K0

> K0a

a
>K0 a

>
a

�
(10)

where we defineHi to be the infinite homography between views 0 andi, and we can
rewrite (9) as:

!
�

i = KiKi
> = Pi

�
K0K0

> K0a

a
>K0 a

>
a

�
Pi
> (11)

where
�
a
>1
�

is a 4-vector encoding the location of the plane at infinity�1.
Combining (10) and (11) theprojection constraintbecomes

!
�

i = KiKi
> = HiK0K0

>Hi
> = Hi!

�

0

>Hi
> (12)

Thus in the case of a rotating camera theprojection constraint ofQ�
1

reduces to theinfinite
homography constraint.
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4 Self-calibration method

We shall adopt an approach similar to Pollefeyset al. [10] using theinfinite homography
constraint(12) to solve for the camera calibration matricesKi given the set of 2D projec-
tive transformationsHi which relate corresponding points between the views 0 andi. A
minimal parameterisation has been chosen to represent the upper triangular matricesKi

using the 5 intrinsic parameters of the camera:�u; r; u0; v0; k.
If U is the number of unknown intrinsics in the first frame, andV is the number of

intrinsics which may subsequently vary, then the total number of unknowns isU+V (n�
1) wheren is the number of frames. A condition for a solution is therefore

U + V (n� 1) � P (n� 1) (13)

whereP is the number of independent equations provided by (12) which is clearly less
than or equal to 5. We therefore requireV < 5 (i.e. strictly less than 5), meaning that not
all the intrinsic parameters may be allowed to vary throughout the sequence and therefore
some constraints on the parameters must be available. When this is the case, equation
(12) may be solved and the calibration matricesKi may be determined.

An approximate solution may be obtained using a non-linear least squares algorithm.
In our implementation, a Levenberg-Marquardt algorithm was used, where the parameters
to be computed were the unknown intrinsic parameters of each calibration matrixKi and
the cost function to be minimized was

nX
i=1

k KiKi
> � HiK0K0

>Hi
> k2F (14)

whereKiKi> andHiK0K0>Hi> were normalised so that their Frobenius norms were equal
to one to eliminate the unknown scale factor.

The interesting property of this self-calibration method is that all the constraints avail-
able on the camera intrinsic parameters may be readily included in the model and used
to constrain the minimization process since the parameterization used for the calibration
matricesKi explicitly uses the intrinsic parameters of the camera.

In particular, standard video cameras generally satisfy that there is no skew between
the sensor array axes and that the aspect ratio is fixed. Often it may also be assumed that
the principal point is located in the centre of the image and that its location does not vary
significantly, so it can be assumed to be fixed.

Once the calibration matrices have been determined it is straightforward to compute
the rotation matricesRi which express the relative orientation of each frame with respect
to the reference frame using the expressionRi = K

�1

i HiK0.

5 Experiments

In this section we present experimental results using our calibration method. Experi-
ments were run both on synthetic and real sequences. The synthetic experiments proved
the feasibility of the method. However, we only report the results obtained using real
imagery here since ground truth data was available for comparison and they prove the
self-calibration method to be very useful in practice.
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5.1 Wembley sequence

Figure 1 shows a sequence of images of Wembley Stadium taken with a tripod mounted
camcorder from the broadcast gantry. The camera was panned (but not tilted) and zoomed
out during the sequence. The inter-image homographies have been computed using optic
flow [12].

For this sequence, the aspect ratio was fixed at 1.0 and the skew fixed at 0.0, typical
values for standard video equipment. The principal point was allowed to vary, since in
cheaper zoom lenses the principal point tends to “barrel” as the lens is zoomed in and out,
a result of minor mechanical misalignments. This phenomenon can be observed in the
computed values of the principal point shown along with the computed focal lengths in
figure 2. The computed rotation of the camera is plotted in figure 2. Although the true
data in this case were unavailable, the computed data tally well with our expectations.

Figure 1: The mosaic constructed from a panoramic sequence of Wembley Stadium.
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Figure 2: Values computed for the focal length (left) and principal point (centre) and pan
and tilt angles (right) for the Wembley Stadium sequence.

5.2 Bookshelf sequences with ground truth data

Two image sequences were taken using a camera with a zoom lens mounted on our Yorick
stereo head/eye platform [13]. In these experiments we use only two of the degrees of
freedom (of the four available), using one of the two independent vergence axes to pan
the camera, and the common elevation axis to tilt it. In the first sequence, the focal
length of the camera remained fixed, while the pan and the tilt of the camera were varied
following a circular trajectory. This experiment was carried out to assess the performance
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of the self-calibration method in the case of constant intrinsic parameters. In the second
sequence, the focal length of the camera was set to increase linearly, using the controlled
zoom lens, while the camera performed the same circular movement.

Figure 3: Mosaics constructed from the two bookshelf sequences during which the camera
panned and tilted while the focal length remained fixed (left) and was varied (right).

Ground truth values for the pan and tilt angles of the camera were provided by the
encoders of the head/eye platform, which are accurate to 0.01 of a degree. The servo lens
provided ground truth data of the position of the zoom lens for each frame in the image
sequence. The camera was then calibrated, using an accurately machined calibration
grid and classical calibration algorithm, to obtain ground truth values for the internal
parameters at each of the different positions of the zoom lens. Radial lens distortion was
modelled using a one parameter model and the images appropriately warped to correct
for this factor.

The homographies that relate corresponding points between views were computed
in two stages. First, the inter-image homographies were computed from corresponding
corners (detected and matched automatically). Second, the homographies were refined by
minimizing the reprojection image error using a bundle-adjustment technique [1]. This
second stage is usually essential in order to obtain accurate calibration results. Figure 3
shows the mosaics of both image sequences. In both sequences the aspect ratio was fixed
at 1.0 and the skew at 0.0 in the self-calibration process.

Figure 4 shows the results obtained for the calibration parameters and the rotation
angles, along with the ground truth data, for the constant focal length sequence. The ex-
periment was first run assuming both the principal point and focal length to be unknown
but fixed, reproducing Hartley’s experiment[4], giving very accurate results. The addi-
tional experiments have (i) the focal length estimate allowed to vary but the principal
point fixed, (ii) the principal point estimate allowed to vary but the focal length fixed, and
(iii) both focal length and principal point estimates allowed to vary. The results match
the ground truth data very accurately, except when the principal point was free to vary, in
which case the focal length was underestimated.

In figure 5 we show the ground truth and computed values of the internal parameters
and the rotation angles for two different experiments run on the variable focal length
sequence. The principal point was assumed to be unknown but fixed in the first and
allowed to vary in the second. The results obtained using the fixed principal point model
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match the real data very accurately. However, when the principal point was allowed to
vary the focal length was overestimated by10%, while the pan and tilt angles were still
computed very accurately.

Convergence to the same values was achieved over a very wide range of starting values
in both sequences.

The errors when the principal point was allowed to vary require further investigation.
It seems likely that the cause is overfitting of the data, since they were acquired with a
high quality zoom lens in which the true principal point varied little over the zoom range
(figures 4 and 5 include the ground truth values obtained from classical calibration).

6 Discussion

We have presented a method for self-calibration of a camera which can rotate and change
its intrinsics, but not translate. The basis of the method draws on ideas from several
previously published self-calibration methods, in particular [4, 10], and fills one of the
remaining holes in the larger self-calibration picture. We conducted experiments with
real imagery and ground truth data for comparison which assess the accuracy and the
stability of the self-calibration process and prove it a very useful method in practice.

Our method currently uses the inter-image homographies as input. An alternative
approach we are currently investigating is more direct, namely minimising the objectiveP

ij jjx
j
i � KjRj x̂ijj over the calibration and rotational parameters in each framej and

over estimates of the true points on�1, x̂i (i.e. direction vectors). An attractive feature
of this method would be the possiblity of incorporating a radial correction parameter in
the minimisation,

P
ij jjx

j
i �g(�j ; x̂i)jj, whereg is a non-linear function of intrinsic and

extrinsic calibration parameters�j , including a term for radial distortion.
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