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Abstract

A previous publication has described a method of pairwise 3D surface cor-
respondence for the automated generation of landmarks on asetof examples
from a class of shape [3]. In this paper we describe a set of improved algo-
rithms which give more accurate and more robust results. We show how the
pairwise corresponder can be used in a extension of an existing framework
for establishing dense correspondences between a set of training examples
[4] to build a 3D Point Distribution Model. Examples are given for both
synthetic and real data.

1 Introduction

We are interested in building Point Distribution Models (PDMs) of 3D shapes [6]. This
requires dense correspondences to be established between a set of training examples of
the shape. Previous publications [3] including some describing methods of surface cor-
respondence [7] [1] have described probable solutions to parts of this problem. Here we
describe a completely automated approach which involves extending the previous work
and improving the accuracy and robustness of some of the algorithms.

Currently, the construction of a PDM involves the manual identification of a set of
L landmarksfxi; 1 � i � Lg for each ofN training examples of a class of shapes. A
landmark is a point which identifies a salient feature of the shape and which is present on
every example of the class. Manual definition of landmarks on 2D shape has proved to
be both time-consuming and subjective. The interactive identification of landmarks in 3D
images or on pre-segmented surfaces is considerably more difficult and time-consuming
than in the 2D case.

Hill at al have previously described a method of non-rigid correspondence in 2D
between a pair of closed, pixellated boundaries [5] [4]. The method is based on gener-
ating sparse polygonal approximations for each shape; no curvature estimation for either
boundary was required. Results were presented which demonstrate the ability of this al-
gorithm to provide accurate, non-rigid correspondences. This pair-wise corresponder was
used within a framework for automatic landmark generation which demonstrated that
landmarks similar to those identified manually were produced by this approach.

A similar framework is the basis of the approach to 3D automatic landmark generation
described here, and consists of the the construction of a binary tree of merged shapes.
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Once such a tree has been produced, a set ofLt landmark points may be identified on the
root (mean) shape of the tree and the positions of these landmarks propagated out to the
Nt leaf (example) shapes. The algorithm used to construct this tree requires a pair-wise
corresponder which both matches shapes (so that they can be merged) and measures the
quality of the match (in order to decide which pairs to merge).

We demonstrate the production of a densely triangulated mean shape from a set of
smooth synthetic examples by the correspondence of their sparse polyhedral approxima-
tions and the production of a binary tree of merged shapes. A 3D PDM constructed using
these landmarks is demonstrated by displaying modes of shape variation. The ability of
the method to build a model of a complex biological shape is also demonstrated using
examples of the left ventricle of the brain.

2 Polyhedral-Based Correspondence

The pair-wise correspondence algorithm previously described [3] comprised two stages:

1. Generation of sparse polyhedral approximationsA00 andB00 of the input shapes
A andB by triangle decimation, for whichfA00

i g � fAig andfB00

i g � fBig.
The connectivity descriptions of vertices in these polyhedra are updated during the
decimation process.

2. Generation of a corresponding pair of sparse polyhedraA0 andB0. This is ac-
complished using a global Euclidean measure of similarity between both the sparse
polyhedronA00 and a subset of labelled vertices fromB and betweenB00 and a
subset fromA. The connectivity and number of vertices from eitherA00 orB00 is
chosen to define the polyhedraA0 andB0 from the labelled verticesfA0

ig � fAig
andfB0

ig � fBig.

Our adaptation of the sparse polygon generation algorithm still makes use of a deci-
mation method described by Schroederet al [8]. However, we now use adistancemetric
which preserves sharp edges and thin structures, the volume metric used previously was
less accurate in this respect. This distance metric still allows us to treat all of the vertices
of a mesh uniformly and to dispense with the vertex characterisation step of Schroeder’s
algorithm.

The distance metric is computed using Schroeder’s distance to mean plane measure.
The mean plane associated with a vertexv0 is defined by a unit normal̂u and weighted
centroidx which are defined using thenv0 triangles connected tov0:

u0 =

Pnv0
i=1 n̂iAiPnv0
i=1 Ai

; û0 =
u0

ku0k
; x0 =

Pnv0
i=1 xiAiPnv0
i=1 Ai

(1)

wherexi, n̂i andAi are respectively the centroids, unit surface normals and areas of
trianglei(1 � i � nv0) connected tov0. The distance metric,D, is computed as:

D(v0) = jd(v0)� d0(v0)j (2)

whered(v0) andd0(v0) are thesigneddistances of the vertexv0 to the mean plane of
the loop before and after decimation i.e.d(v0) = û � (v0 � x). By decimation it is
meant that the vertex associated with the loop has been removed and the resulting hole
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re-triangulated. Re-triangulation of the hole is by a recursive loop-splitting algorithm
which seeks to fill the hole with triangles of low aspect ratio. The results of running this
decimation algorithm on a densely triangulated surface representing a left lateral ventricle
of the brain can be seen in Figure 1, notice the preservation of the thin edge structure at
bottom left of the ventricle.

Figure 1: Result of applying the decimation algorithm to a triangulated surface of the
left ventricle of the brain. On the left is a shaded representation of the original dense
triangulation with approximately 2000 vertices. On the right the same surface represented
by 200 vertices (decimated by 90%).

2.1 Correspondence via Euclidean Transformation

As in [3], correspondences are established using a symmetric version of the ICP algorithm
[2] which determines a Euclidean transformationQ between the corresponded examples
to satisfy:

Min E2

S =
1

nA00

n
A00X

i=1

kQ(A00

i )�Q�1(B0

i)k
2 +

1

nB00

n
B00X

j=1

kQ(A0

j)�Q�1(B00

j )k
2 (3)

whereQ(p) = sRp + t, s is a scale factor,R is a rotation matrix andt is a translation.
A single corresponding pair of sparse polyhedra must be now established from the two
polyhedron/pointset pairs,(A00; fB0

ig) and(B00; fA0

ig). The choice of connectivity is not
critical and so we choose the connectivity ofA00 (the binary tree framework causes the
error of the match to be tested for both pair orderings). This choice defines one of the
corresponding sparse polyhedraA0 � A00. However, the choice of a single connective
description imposes a choice about the polyhedron/pointset pair used to establish corre-
spondence, in this case,(A00; fB0

ig). This does not guarantee a goodrepresentationof
shapeB by the pointsetfB0

ig. At present we use the cost :

E = �ES +ER (4)

where

E2

R =
1

nA00

n
A00X

i=1

Min
j
kQ(Aj)�Q(A0

i)k
2 +

1

nB00

n
B00X

k=1

Min
l
kQ�1(Bl)�Q�1(B0

k)k
2

(5)
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to determine which of the pair orderings to use for the match. As in the 2D algorithm [4],
we set� = 0:2, but have not found this value to be critical.

The connectivity description ofA00 is now combined with the pointsetfB0

ig to pro-
duce a pair of matching polyhedra with a one-to-one mapping(A0 7! B0). The number
of correspondencesn� has now been determined:n� = nA0 = nB0 .

3 Merging Shapes

Given a pair of corresponding sparse polyhedraA0 andB0 , a local surface parameteri-
sation is used to interpolate a dense set of vertices on each. The local surface parameter-
isation is of a single sparse triangle, and is produced by a parameterisation of the three
surface paths corresponding to its three edges. If the triangles of the two sparse polyhe-
dra correspond, then so will the interpolated vertices within them. The connectivity of
these vertices is defined by the interpolation. The interpolated vertices of this dense cor-
responding pair may then be merged by combining the geometric information from both,
with the connectivity description which is identical in each.

3.1 Parameterisation of Surface Paths

The accurate and robust parameterisation of surface paths between the vertices of a dense
triangulated surface has proved to be the key to the use of this landmarking framework in
3D. It has also proved to be one of the most challenging problems.

As in the previous work, a ‘brushfire’ type distance transform algorithm is used to
march the path across the surface between dense edges of the triangulation. At each
stage, the minimisation of a costCi(y0) locates the best next point for the surface path on
edgeyi attached toy0. A pointx on edgeyi can be expressed parametrically by:

x = v1 + s(v2 � v1); s 2 [0; 1] (6)

wherev1;v2 are the vertices on the mesh which define the edgeyi. We consider not just
the path(a;b) which is a sparse polyhedral edge, but also the dense polyhedral triangles
t1 andt2 connected to the dense edge under consideration, see Figure 2.
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Figure 2: The cost function used to produce surface paths is defined in terms of a pair of
dense polyhedral triangles connected to the dense edge under consideration.
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We construct a plane normal to the surface defined by the reference pointc = (a +
b)=2 and by the unit normal̂nc, wheren̂c � (A1n̂1 + A2n̂2) = 0, in whichA1 andA2

are the areas of the trianglest1 andt2 respectively, and̂n1 andn̂2 are the unit normals to
these triangles. The point of intersection of this plane and the line defined in Equation 6
is found. The cost function of igniting an edgeyi from edgey0 is defined only for the
intersection of the line segment given bys 2 [0; 1]:

Ci(y0) = (ka� x0k2 + kb� x0k2)=ka� bk2 (7)

wherex0 is the projection ofx on the sparse edge(a�b). This cost constrains the surface
path to lie within the line defined bya andb, thus preventing it from looping back around
the entire surface of the shape.

3.2 Producing a Mean Shape

The connectivity ofA0 andB0 are identical. Therefore, we can correspond the individual
sparse triangles of the polyhedra. A dense set of corresponded sampling points may then
be generated within each pair of triangles. First, the three surface paths corresponding to
the edges of a sparse triangle are extracted using the method of the previous section. Next,
three new vertices are defined at the midpoints of these paths. The triangle is now split into
four new sub-triangles. This process is applied to all the triangles ofA0 andB0 recursively
to somedepthto produce the dense triangulationA0

d
andB0

d
. Now a densely triangulated

mean shape may be generated by averaging the geometric information of these dense
triangulations to produce a pointsetfCig and this is combined with the connectivity from
A0

d
to produce a densely triangulated polyhedronC.

4 Automated Landmarking

The pairwise corresponder described above is used to build a binary tree of merged shapes
with a single mean shape at the root and the examples from the training set at the leaves.
We produce a set of landmarksfCl;ig � fCig on the mean shape by decimation to the
required number of landmark points. The connectivity of these points is defined by the
sparse polyhedronCl. These landmark points are then propagated down the branches of
the tree to the original example shapes at the leaves.

At each branch of the tree, each of the landmark points can be projected onto a tri-
angle of the sparse version of the mean shapeC0 which is the mean ofA0 andB0. The
projection is along the normal to the sparse triangle associated with the landmark point,
which is chosen from the dense result of splitting that triangle. The sparse triangle is then
parameterised along a baseline and a vector between the baseline and opposite vertex,
see Figure 3. The projectione on the triangle(a; c;b) is now uniquely defined by the
parametric pair(t; u).

There is a correspondence between the vertices of this sparse triangle(a; c;b) onC0

and the vertices of a pair of sparse triangles onA0 andB0. For simplicity, we will deal
only with the mapping toA0. Call the sparse corresponding vertices onA0, (a0; c0;b0).
The projection pointe can therefore be mapped onto the sparse triangle(a0; c0;b0), by
parameterising it int atu to givee0.

We must now reconstruct a point on thesurfaceof A which corresponds to the pro-
jection pointe0 mapped onto a sparse triangle. We do this by first constructing surface
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Figure 3: Sparse triangles are parame-
terised along the baseline (t) and along
a vector between the baseline and op-
posite vertex (u) of a sparse triangle to
define the position of pointe.
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Figure 4: Projected points are recon-
structed on dense surfaces by the pa-
rameterisation of surface paths con-
structed across the baseline and from
the opposite vertex of a sparse triangle.

paths using the method of section 3.1. First, we construct a surface path betweenb0 and
c0. By parameterising this surface path, we can find an approximation to the position of
d0 reconstructed on the surface of the dense triangulationA. We now construct another
surface path froma0 to the reconstruction ofd0. Parameterisation of this second surface
path gives an approximate position for the reconstruction ofe0 on the dense surface, see
Figure 4. Finally we choose the landmark on the dense surface as the vertex with smallest
Euclidean distance to the reconstruction ofe0. This process is repeated for both shapesA

andB that contributed to the meanC.
The choice of a vertex from the dense surfaces of the two contributing shapes provides

us with a set of accurate landmarks which are a subset of the densely triangulated shapes.
Starting at the root, we can repeat the two mapping procedures at each level of the tree of
merged shapes until the leaf level of example shapes is reached. The connectivity of each
set of landmark points is that of the mean shape and is propagated through the tree.

5 Results

5.1 Tree of Merged Shapes

In order to test the pair-wise correspondence and merging algorithms, we have constructed
a binary tree of merged shapes, and used this to produce a set of landmarks for a 3D PDM.
The shapes are six smooth synthetic examples of ellipsoids with varying aspect ratios.
Each shape has� 1000 vertices. Such shapes are difficult to match and merge because
there are no obvious landmarks (salient features). In addition, any errors introduced dur-
ing the construction of dense merged mean shapes will be indicated by prominent features
on these surfaces which are expected to be smooth.

The tree of merged shapes is shown in Figure 5 as a series of shaded and rendered
triangulated surfaces. The first level shows six input example shapes. The second and
third levels show the means of the shapes to the left and right in the levels below. Level
4 is the merged mean of the two shapes in level 3 and represents the mean shape of the
six input examples. In each case, the original triangulated surface was decimated to10%
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of the original number of vertices in the example shapes to produce the sparse polyhedral
representation during matching.

level 4!
(mean)

level 3!

level 2!

level 1!
(examples)

(1:3:1) (1:2:1) (1:1:1) (3:1:3) (2:1:2) (2:1:3)
example shape aspect ratios

Figure 5: A merge tree of six synthetic examples of varying aspect ratios. Level 1 shows
the six original example shapes which are merged to produce the three densely triangu-
lated mean shapes of level 2. These shapes have been merged to produce the mean shapes
of level 3, and finally the single mean shape of level 4. At each level of the tree, the shape
is a mean of the two shapes to the left and right in the level below.

The pair-wise correspondence and merging algorithms have proved to be computa-
tionally tractable - the matching of two shape surfaces (� 1000 vertices) using a decima-
tion of 90% for the sparse polyhedral representations takes around 15 CPU seconds on a
Sun UltraSPARC 2. The merging algorithm takes a further 30 CPU seconds to produce a
densely triangulated mean from the resulting matched sparse polyhedrons.

5.2 A 3D Point Distribution Model

We have constructed a 3D Point Distribution Model of the six smooth synthetic shapes
described in the previous section. Each example shape consisted of 300 landmark points.
An instance of the modelxi = fxi;1; yi;1; zi;1; : : : ; xi;n; yi;n; zi;ng can be generated by:

xi = x+Pb (8)

wherex is the mean shape, the columns ofP are a set of mutually orthogonal ‘modes’ of
shape variation, andb is a vector of shape parameters. The proportion of shape variation
explained by each shape parameter is shown in Table 1. These numbers are calculated as
the proportion of total shape variance that is projected onto each of the vectors inP. The
shape variance is measured in the frame of the normalised mean shape aligned to each of
the sets of landmarked shapes by minimum Euclidean distance.

The first two shape parameters of this model explain over90% of the total shape
variation indicating a compact model. The shape parametersb3 : : : b5 appear to be due to
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mode of variation
variation explained / %

b1 66.6
b2 25.5
b3 3.0
b4 2.8
b5 2.1

Table 1: The proportion of total shape variation explained by each of the 5 modes of shape
variation of the 3D PDM constructed from six smooth synthetic shapes.

noise in the placement of landmarks. A set of instances of the model with the first two
shape parameters set to�1:5 �i � bi � +1:5 �i from the mean shape, where�i is the
standard deviation ofbi over the training set, is shown in Figure 6. The geometric shapes
are shown in both plan and front face view.

(front)!

b1

(plan)!

(front)!

b2

(plan)!

-1.5 -1.0 -0.5 0 +0.5 +1.0 +1.5
number of s.d.s from the mean shape

Figure 6: Shape instances generated using the 3D PDM of six smooth synthetic shapes.
The instances are generated by varying a single shape parameter, holding all others con-
stant at 0 s.d.s from the mean shape. Each instance of the shape model consists of 300
points.

We have also generated a 3D PDM from four complex biological shapes - left ventri-
cles of the brain, see Figure 7. These have been defined by hand as contours on a series
of 2D slices from 3D Magnetic Resonance images. The ventricles of the brain have a
complex structure and vary significantly between individuals in both their size and shape.
The example shapes consisted of� 2000 vertices, upon which were placed 200 land-
mark points. The first two modes of variation of this model are illustrated in Figure 8,b1
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explains 54.0 % of the total variation, andb2 explains 25.2 %.

1 2 mean 3 4

Figure 7: The four left brain ventricle examples used to generate a 3D PDM and their
densely triangulated mean.

Upon inspection, we can see that the shape instances generated are legal and accu-
rately reflect the shape variation present in the training set of four examples - indicating
an accurate automated placing of landmark points. There are some errors in the recon-
struction of shape instances in the upper lefthand edge of the shape, along a very thin edge
present in each of the examples. We believe these are due to illegal (crossing) correspon-
dences generated by the ICP algorithm in an area of high triangle density.

6 Conclusions

We have presented a novel method for the correspondence of two faceted (triangulated)
surfaces. The method is based on the production of a sparse polyhedral representation of
one shape and matching this to a sparse pointset representation of the other. Qualitative
results have been presented which show that the algorithm can produce accurate non-rigid
correspondences between pairs of smooth synthetic shapes in the production of a binary
tree of merged shapes. Such a tree provides a framework for the automated landmarking
of the input example shapes necessary for the production of a 3D PDM. A method for
the accurate propagation of landmarks from the root to the leaf shapes of such a tree has
been described. We have presented sets of shape instances generated from a 3D PDM built
from such a set of propagated landmarks. The model has been shown to be compact and to
generate legal instances of the set of smooth shapes. We have also produced a model from
complex biological shapes and shown that this model reconstructs legal shape instances.

At present, we do not combine the two sets of correspondence pairs produced by
the symmetric ICP approach. This would require the combination of two connectivity
descriptions, one from each sparse shape. This leads to our use of a representation error
and control parameter�. One focus of our current research is the combination of these two
connective descriptions to eliminate the additional representation error and the trapping
of illegal correspondences generated by the ICP algorithm.
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b1 !

b2 !

-1.5 -1.0 -0.5 0 +0.5 +1.0 +1.5
number of s.d.s from the mean shape

Figure 8: Shape instances generated using a 3D PDM of four left brain ventricles. The
model consists of 200 points.
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