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Abstract

We propose a novel person verification system for real-time face identifi-
cation. The main features of the system include accurate registration of face
images using a robust form of correlation, a framework for global registration
of a face database using a minimum spanning tree algorithm and a method
for selecting a subset of features optimal for discrimination between clients
and impostors. The results indicate that the image registration is of high ac-
curacy and the feature selection is successfully improving on the verification
performance.

1 Introduction

Verification of person identity based on biometric information is important for many se-
curity applications. Examples include access control to buildings, surveillance and in-
trusion detection. Furthermore, there are many emerging fields that would benefit from
developments in person verification technology such as advanced human-computer inter-
faces and tele-services including tele-shopping and tele-banking. Comparing verification
to recognition there are several aspects which differ. First, a client – an authorised user
of a personal identification system – is assumed to be co-operative and makes an identity
claim. Computationally this means that it is not necessary to consult the complete set of
database images (denotedmodelimages below) in order to verify a claim. An incoming
image (referred to as aprobe image) is thus compared to a small number of model im-
ages of the person whose identity is claimed and not, as in the recognition scenario, with
every image (or some descriptor of an image) in a potentially large database. Second, an
automatic authentication system must operate in near-real time to be acceptable to users.
Finally, in recognition experiments1, only images of people from the training database are
presented to the system, whereas the case of an imposter (most likely a previously unseen
person) is of utmost importance for authentication.

In this paper, we focus on person verification based on frontal face images. The
method proposed here has several properties in common with the pose estimator and face
recogniser presented in [2]. In both cases, localisation is performed using correlation with

�The research reported in this paper was funded by ACTS-M2VTS and ESPRIT RETINA.
1At least as commonly reported in the field of face recognition.
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templates in a multi-resolution fashion. However, the approach described in [2] is com-
putationally expensive due to the large number of templates required to handle variations
in scale, rotation and pose. Furthermore, the result of the registration is highly dependent
on the output of feature detectors. Our work is also related to the face recognition system
presented in [5]. Different robust estimators are evaluated using template matching on a
pre-normalised database of face images. Other traditional approaches to face recognition
include the eigenface approach [14] and the dynamic link architecture [10].

The work presented below is a development of [11] but there are a number of impor-
tant differences. First, the registration is more accurate due to the inclusion of gradient
information in the search process. Second, the method does not require a segmentation
of the incoming image. However, an initial segmentation of the database images is still
required but this can be performed off-line and does, therefore, not affect the run-time
performance. Third, we present a novel framework for global registration of a database
of face images and, fourth, we show how feature selection can be used to improve the
accuracy and efficiency of the verification process.

In the proposed method, model images are pairwise registered using a robust form of
correlation. The registration process is treated as an optimisation problem and the cor-
responding search space is defined by the set of all possible geometric and photometric
transformations. In each point of the search space, a score function is evaluated and the
optimum of this function is localised using a combined gradient-based and stochastic op-
timisation technique. Using gradient information we can efficiently find the local maxima
and the stochastic component allows us to jump between different “hills” in the search
space. To meet the real-time requirements and to ensure high registration accuracy, we
use a multi-resolution scheme in both the image and parameter domains.

The verification procedure can be based directly on the output of the optimisation by
thresholding the match score (this approach was evaluated in [11]). However, a more
accurate and efficient approach is to select a subset of features which are optimal for
discrimination between clients and impostors. A prerequisite for the feature selection is
global registration since we need to match corresponding features across different model
images. To achieve this we use a minimum spanning tree algorithm which reduces the
complete graph obtained by matching all possible pairs of model images to a tree struc-
ture. Using this tree, we can find a unique transformation for any pair of images.

Given a global registration, we employ a feature selection procedure based on min-
imising the intra-class variance and at the same time maximising the inter-class variance.
A feature criterion is evaluated for each pixel and the subset of pixels that best discrimi-
nates a given client from the other clients in the database (effectively modelling the im-
postor distribution) are selected. This feature subset is then used in verification allowing
accurate and efficient registration and identification of the probe image.

The rest of the paper is organised as follows. In Section 2, we describe the tech-
nique used for pairwise registration of images, including details about the definition of
the search space, the score function and the combined gradient-based and stochastic op-
timisation method. Furthermore, we also present the minimum spanning tree algorithm
used to achieve global registration and the technique used to select a subset of features
optimal for discrimination between client and impostors. In Section 3, we present results
obtained through experiments on registration accuracy, selection of features and verifica-
tion performance. Finally, we draw conclusions and outline future work in Section 4.
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2 Saliency-Based Robust Correlation

The objective of the robust correlation is to find the global extremum in a multi-dimensional
search space that corresponds to the best match between a pair of images. This search
space is defined by the set of all valid geometric and photometric transformations. In our
implementation of the proposed method the geometric transformations are translation,
scaling and rotation. Given a point in the multi-dimensional search space, a score func-
tion is evaluated. This function and some of its properties are described in Section 2.1. To
find the global extremum of the score function a stochastic search technique incorporating
gradient information is employed. This optimisation method, which was shown to be par-
ticularly suitable for the given search problem (see Section 3), is discussed in Section 2.2.
Matching of corresponding features across clients requires global registration. This is
achieved using a minimum spanning tree algorithm described in Section 2.3. Finally, the
techniques used for selecting an optimal subset of features are outlined in Section 2.4.

2.1 Score Function

Given an affine transformation~a, the error function expressing the intensity difference
between a pixelp in the model imageIm and its projection in the probe imageIp is
defined as

�(p;~a) = Im(p)� Ip(T~a(p))

whereT~a denotes the geometric transformation function. In the current implementation,
three different transformation functions are used (see Section 2.2):

T~a(x; y) = (x+ a1; y + a2) (1)

T~a(x; y) = (a1x� a2y + a3; a2x+ a1y + a4) (2)

T~a(x; y) = (a1x+ a2y + a3; a4x+ a5y + a6) (3)

Equation 1 describes a simple translational model whereas Equations 2 and 3 describe
more sophisticated models incorporating (uniform or non-uniform) scaling and rotation.
These affine transformations are applied globally to all pixels treating the face as a rigid
object (see Section 4 for a discussion on how to extend the method to incorporate non-
rigid transformations). The score function used to evaluate a match between the trans-
formed model image and the probe image is

S(R;~a) =
1

jRj � �max

X
p2R

�(�(p;~a))

where� denotes a robust kernel. In other words, this function is the average percentage of
the maximum kernel response taken over some regionR typically obtained by segmenting
the model image2. Possible kernel functions are the Huber Minimax and the Hampel
(1,1,2) [7]. Experiments reported in [4] showed that the choice of kernel is not critical.

The parameters of the score function are purely geometrical and the intensity val-
ues are not subjected to any transformation. There are several ways in which photomet-
ric normalisation can be incorporated into the proposed method. One simple approach
would be to pre-normalise the images to zero mean and unit variance. This technique has

2Note that this can be done off-line and there is no need for segmenting the probe image.
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the obvious benefits of being fast and simple to implement but the global nature of the
method in combination with the inability to model transformations of higher complexity
is a clear disadvantage. Another possible approach which allows for more sophisticated
transformations amounts to extending the dimensionality of the search space by including
parameters controlling the transformation of intensity values (with the number of param-
eters deciding the complexity of the model; this approach was evaluated in [11]). For
efficiency reasons, we decided to adopt a less sophisticated approach in which we (for
each point in the search space) shift the histogram of residual errors using the median er-
ror. Of course, in a general context with highly-varying and non-uniform illumination this
might not be adequate and an extension of the method which features local normalisation
of intensity values is discussed in Section 4.

2.2 Optimisation Method

To find the global extremum of the score function we employ a stochastic search technique
incorporating gradient information. The basic idea is to use the gradient to efficiently
find the local optima3 and then to jump between different hills (or valleys in the case
of minimisation) by randomly perturbing the current point. The gradient-based search
is implemented using steepest descent on a discrete grid with the resolution of the grid
being changed during the optimisation (multi-resolution in the parameter domain) fol-
lowing a predefined schedule. In the four-parameter case (see Equation 2), the different
components of the gradient (the partial derivatives with respect to the affine coefficients)
are
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where	 denotes the influence function of the robust kernel (obtained by differentiating
the kernel). The stochastic search is performed by adding a random vector drawn from
an exponential distribution (meaning that small perturbations are more likely than larger
ones). This optimisation technique is effectively a special case of simulated annealing [9]
which has been successfully applied within the areas of object detection and recognition
as reported in [8, 1].

To meet the real-time requirements of the verification scenario, we employ a multi-
resolution scheme in the spatial domain. This is achieved by applying the combined
gradient-based and stochastic optimisation as described above to each level in a Gaus-
sian pyramid. The estimate obtained on one level is used to initialise the search at the
next level. In addition to the speed-up, this multi-resolution search also has the benefit
of removing local optima from the search space effectively improving the convergence
characteristics of the method.

3The assumption is that the score function is sufficiently smooth close to the optimum to enable the use of
the gradient.
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2.3 Global Registration

The verification of a client can be based directly on the score obtained from the pair-
wise registration. For example, given a threshold determined using the training data (the
database of model images), one possible approach would be to consider the client access
as authentic if the corresponding match score exceeds the threshold. However, further
improvements can be made by first selecting the optimal subset of features that best dis-
criminates a client from the impostors (see Section 2.4). This selection procedure requires
global correspondence between features and we therefore need to disambiguate our regis-
tration which amounts to reducing the complete graph obtained by matching all possible
pairs of model images to a tree structure. In the current implementation, we are using a
minimum spanning tree algorithm as a suboptimal way of performing the graph reduction.
The technique is suboptimal since is does not take into account any information about the
quality of the resulting feature selection (see Section 4 for possible extensions of the
method). When constructing the tree the clients are not treated separately and each model
image is linked to the closest neighbour (corresponding to the highest match score). An
alternative would be to build a minimum spanning tree for each client and then to merge
the set of client trees using a similar technique. This method forces client frames to be
linked together which should improve the client-wise correspondence. However, there is
a trade-off between client-wise and global correspondence and an improvement in one
is likely to worsen the other. Examples of a client mean image (obtained by building a
minimum spanning tree for the set of client frames) and a global mean image (computed
from the global registration of all clients) are given in Section 3.

2.4 Feature Selection

Given a global registration of the model database, the optimal subset of features can be
identified for each client and used in the subsequent verification. In this way, the verifi-
cation can be made more robust and efficient since noisy features are suppressed and the
dimensionality of the client representation is significantly reduced. The basic idea is to
minimise the intra-class variance and at the same time maximise the inter-class variance.
In the following we briefly present the theoretical framework underlying this idea.

The method we have adopted uses the inter-class scatterf and the intra-class scatter
g, computed for each pixelp as

f(p) =
1

N � 1

NX
i=1

(�i(p)� �(p))2 (4)

gc(p) =
1

M � 1

MX
i=1

(I(c;i)(p)� �c(p))
2 (5)

whereN denotes the number of clients,M the number of images per client,c the current
client, I(c;i) the ith image ofc, �c the mean image corresponding toc and� the over-
all mean image. Given the inter-class scatter and the intra-class scatter, we define the
criterion for class separability as

K(p) =
f(p)

gc(p)



British Machine Vision Conference 49

(a) Shot 1 (b) Shot 2 (c) Shot 3 (d) Shot 4 (e) Shot 5

Figure 1: Frontal-face images from the M2VTS database.

Since we want to minimise the intra-class variance and at the same time maximise the
inter-class variance we are looking for pixels with high values inK. However, before the
optimal subset of pixels is extracted, a non-maximum-suppression technique is applied
on the criterion matrix with the aim of decorrelating the features (neighbouring pixels are
likely to be correlated and can therefore be represented by a single pixel corresponding to
the highest value inK).

Given the optimal set of pixels, the verification is performed by computing the score
function over the feature subset. There are several issues in this context that need to be
addressed. For example, how to combine the scores obtained on different pixels. One
possibility would be to weight the pixels according to the corresponding feature criteria.
However, the natural choice for the robust correlation is to select the optimal set of pixels
and then to adjust the width of the kernel function according to the variance of the indi-
vidual pixels. The results reported in Section 3 were obtained using straight averaging
but future implementations of the method will incorporate pixel-dependent kernel width.
Another issue is how many features should be used to represent a given client. It should
be noted that this is not a traditional feature selection problem since we are aiming for
a redundant set of features to be robust against occlusion, slight mis-registrations and so
on. Furthermore, some clients may require more features than others for an adequate
representation.

3 Experimental Results

The experiments summarised below were all performed on images from the M2VTS
multi-modal database [12]. This publicly available database contains facial images and
recordings of speech from 37 persons. For each person, 5 shots acquired over a period of
several weeks are available. A single shot is made up of 3 sequences: (1) a frontal-view
sequence in which the person is counting from 0 to 9, (2) a rotation sequence in which
the person is moving his or her head and (3) a rotation sequence identical to the previous
one except that, if glasses are present, they are removed. Some sample images from the
M2VTS database are shown in Figure 1.
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(a) Shot 1 (b) Shot 4 (c) Kernel Response (d) Interleaving

Figure 2: An example of a client registration: Person BP shot 1 against shot 4.

3.1 Registration and Verification Performance

An example of a client registration is shown in Figure 2. The response image in Fig-
ure 2c was computed by applying the robust kernel to each pixel in the overlapping re-
gion between the transformed model image and the probe image. The combined image
in Figure 2d was obtained by transforming the model image and then selecting rows in-
terchangeably from the transformed image and the probe image. Mismatches appear in
areas with hair change and non-rigid deformations (i.e. the mouth region) as well as in
the parts of the face not visible in both frames. Due to the robust kernel these mismatches
do not have a disproportionate influence on the match score and the client registration is
successful. The result of a more quantitative analysis of the registration error is shown
in Figure 4c. The accuracy of the pairwise alignment was estimated as the Euclidean
distance between the manually located eye coordinates of the probe image and the corre-
sponding coordinates predicted by the robust correlation. The median deviation is1:87
pixels.

The accuracy of the registration can also be verified by examining the mean images
shown in Figure 3. The mean image obtained using automatic registration (Figure 3b) is
more or less equally blurred compared to the one obtained using manual registration (Fig-
ure 3a). The main difference is in the eye regions which is a direct consequence of the fact
that the manual registration was performed by aligning the eye centres. Figures 3c and 3d
show the mean and variance4 images for client BP obtained using automatic registration.

To demonstrate the overall verification performance of the robust correlation a set
of experiments were performed using frontal-view images from one of the two rotation
sequences of the first four shots. The verification performance was estimated using the
leave-one-outmethodology in which training and testing sets are disjoint. Four different
experiments were performed: manual registration followed by feature selection, auto-
matic registration with and without feature selection and automatic registration using the
mean image for each client instead of the individual frames in verification. The receiver
operating characteristics (ROC) for these four cases are shown in Figure 4a. As expected,
the manual registration performs slightly better than the automatic one. The equal error
rate (EER) in the two cases are9:3% and10:1% (using the mean image for each client).
In the case of automatic registration, there is a clear improvement when the feature se-

4The variance image was obtained using gamma correction to emphasise areas of large variance.
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(a) Mean, Man Reg (b) Mean, Auto Reg (c) BP Mean, Auto
Reg

(d) BP Variance,
Auto Reg

Figure 3: Mean and variance images after registration: (a) global mean image (manual
registration), (b) global mean image (automatic registration), (c) mean image for client
BP (automatic registration) and (d) variance image for client BP (automatic registration).

lection is included. The EERs with and without feature selection are10:5% and11:5%,
respectively. Furthermore, the EER is slightly reduced when the mean image is used in-
stead of the individual frames. In the latter case, we adjust the inter-class scatterf(p) by
adding a correction factor. Following the notation in Section 2.4, the corrected inter-class
scatter is

f 0(p) = f(p) +
N

N � 1
(�(p) � �c(p))

2

The dependence of the verification performance on the number of features used to rep-
resent the clients is shown in Figure 4b. The number of features was increased until no
further improvements in verification performance were achieved. The saturation point is
at approximately400�500 features which corresponds to a sampling rate of3%. Results
obtained by other research groups on the M2VTS database include EER3:7% and5:4%
using elastic graph matching based on mathematical morphology [13] and local discrim-
inants [6], respectively. These methods are, however, computationally expensive and the
typical run-time is a factor of ten higher than the robust correlation (depending on how
many features are used to represent the clients).

3.2 Efficiency Considerations

The execution time for the robust correlation depends on the number of features used
for representation of the client and the number of optimisation steps (which is a function
of the similarity of the compared images and the starting point in the multi-dimensional
search space). In Figure 4d, an histogram of execution times of client and impostor regis-
trations is shown. These run-times should be considered an upper bound since all pixels
were used (this is the case for the pairwise registration of the model images which takes
place before the feature selection). The execution times were obtained from more than
16000 registrations and the median run-times for client and impostors were3:4 and3:9
seconds, respectively.
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Figure 4: Verification performance as function of (a) registration method (manual versus
automatic) and feature selection scheme (no selection versus selection followed by verifi-
cation using individual frames and mean image, respectively) and (b) number of features;
(c) registration accuracy shown as absolute deviations in eye coordinates; (d) histogram
of client and impostor registration times on Sun Ultra Enterprise 450.

4 Concluding Remarks and Future Work

We have described a novel person verification system based on frontal face images. The
main features of the system include accurate registration of face images using a combined
gradient-based and stochastic optimisation technique, a framework for global registration
of a face database using a minimum spanning tree algorithm and a method for selecting
a subset of features optimal for discrimination between clients and impostors. The re-
sults indicate that the pairwise registration is of high accuracy and the feature selection is
successfully improving on the verification performance. However, the global registration
needs further improvements and one way of achieving this is to incorporate information
about the quality of the resulting feature selection. This can be carried out using a feed-
back system in which the discrimination criterion is iteratively fed back from the feature
selection module to the registration module. The proposed method can also be extended
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to handle non-rigid transformations in a way similar to [2]. The basic idea is to apply a
two-step procedure in which the image is first registered using 2D affine transformations
and then, in a second step, the optical flow is computed and a 2D warp is performed on
the output of the flow computation. Finally, pose invariance can be achieved by applying
techniques similar to the one described in [15]. The 2D shape and texture of the probe
image are decomposed into example 2D shapes and textures. This results in a represen-
tation which is invariant under any 3D affine transformation. A WWW demonstration of
the robust correlation can be reached at

http://www.ee.surrey.ac.uk/Research/VSSP/demos/face-ver/
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