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Abstract

This paper describes a novel method for recovering the perspective geometry
of textured surfaces from local spectral moments. It commences by comput-
ing the Fourier power spectrum at each of a series of local neighbourhoods.
We illustrate how the vanishing point of the global perspective geometry can
be estimated from local spectral moments. This is a two-step process. We
commence by identifying contours which connect the local spectral moments
of equal power. These contours are perpendicular to the tilt direction at the
image plane. The second step is to triangulate the vanishing point. We do
this by using a correlation method to identify lines with identical oriented
spectral moment. In this way we can use a sample of spectral moments esti-
mate the vanishing point location.

1 Introduction

Shape-from-texture was identified by Marr as one of the key ingredients of the21
2D sketch

[4]. Moreover, the feasibility of the process is well-grounded in psychophysics [7]. From
a computational perspective, the main obstacle to practical shape-from-texture is the fact
that the identification of surface-markings is in itself insufficient for the recovery of shape
from a single image. When posed in a monocular framework the shape-from-texture
problem is ill-defined. The basic problem stems from the fact that the local distortions of
the texture elements are not entirely attributable to variations in surface orientation. The
process must also account for foreshortening effects due to global perspective geometry
together with natural variations in the texture pattern. Moreover, even if these additional
factors can be controlled, then there is ambiguity in the recovery of surface depth due to
the fact that the overall scale of the texture elements may be unknown.

It is for these reasons that the process of shape-from-texture must be constrained us-
ing certain model assumptions. The most powerful of these are the isotropy and homo-
geneity assumptions. Isotropy asserts that the texture elements have no detectable pref-
erential direction when viewed in a front-parallel manner. Homogeneity requires that the
density of texture elements is uniform. There are two distinct schools of thought as to
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how these constraints should be exploited. According to the structural school it is the
shape or local geometry of texture primitives that should be used to infer the overall per-
spective geometry and hence determine changes in local surface orientation. By contrast,
the spectral method attempts to infer shape from distortions in the frequency representa-
tion of texture.

The structural method uses the geometry of edges, lines or arcs to identify perspective
distortion using shape cues [5, 10]. Unfortunately, the segmentation of the texture prim-
itives is a process of extreme fragility, and in most cases the techniques have only been
demonstrated on synthetic or highly contrived data. Some of the difficulties associated
with the need for accurate geometric information can be overcome by working with statis-
tics or texture moments defined either over single primitives or groups of primitives [1, 6].
The use of frequency domain or spectral measurements represents a way of overcoming
some of the restrictive requirements imposed by the need to work with accurately seg-
mented shape primitives. Moreover, it increases the range of natural textures that can be
accommodated. The approach is exemplified by the work of Super and Bovik [2] which
employs two-dimensional Gabor wavelets to detect the local projective distortion in the
power spectrum.

The work reported in this paper provides a bridge between the geometrically intuitive
structural methods and their more robust frequency domain counterparts. The aim is to
develop a geometric algorithm that can be used to estimate perspective deformation from
spectral distribution. Specifically, we present a geometrically intuitive algorithm which
allows vanishing point, and hence perspective distortions, to be recovered from spectral
information. Our method commences by searching for contours of equal spectral power
on the image plane. For planar textures, these contours correspond to lines of equal dis-
tance from the vanishing point. They connect spectral moments of equal area but different
orientation. The direction of the vanishing point is determined from the relative orienta-
tion of the spectral components. Here we make use of the observation that lines that
radiate from the vanishing point connect points which have identically oriented spectral
distribution. We search for the vanishing point by correlating the angular power distribu-
tion. Since spectral information is independent of texture primitive shape and size, this
geometrically inspired method does not require any pre-segmented image information. It
is therefore applicable to a wide diversity of real-world textures.

2 Geometric Modelling

We commence by reviewing the projective geometry for the perspective transformation
of points on a plane. Specifically, we are interested in the perspective transformation
between the object-centred co-ordinates of the points on the texture plane and the viewer-
centred co-ordinates of the corresponding points on the image plane. We assume that the
two co-ordinate systems share a common origin. Both planes are assumed to be parallel
to thex andy axes of their relevant system of co-ordinates. The image plane is taken
as having zero z-intercept while the texture-plane resides at a heighth above the com-
mon origin. We represent the relative orientations of the two planes using the slant angle
� and tilt � angles. If the focal length of the camera isf , then the perspective trans-
formation between the corresponding points~Xt = (xt; yt; h)

T on the texture plane and
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where

k =
h cos�

f cos� + sin�(xi cos � + yi sin � )

The net effect of this transformation is to distort the viewer-centred texture pattern
in the direction of the vanishing point~V = (x1; y1; 0)T on the image plane. Suppose
that the object-centred texture pattern consists of a family of parallel lines which are ori-
ented in the direction of the vanishing point. When transformed into the image-centred
co-ordinate system, this family of lines can be represented using the set of parametric
equations~Xs = ~A + � ~B, where� is the parametric variable of the individual lines.
The three constants forming the vector~B = (b1; b2; b3)T are the direction cosines for
the entire family. The individual lines in the family are each parametrised by the vector
~A = (a1; a2; a3)T .

The direction cosines for the family of parallel lines are related to the position of the
vanishing point(x1; y1; 0) in the viewer centred co-ordinate system in the following
manner 0
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Suppose the the vector~N = (p; q; 1)T represents the surface-normal to the texture-
plane in the viewer-centred co-ordinate system of the image. Since every line lying on
the texture-plane will be perpendicular to this normal vector, then

~N �
~B = pb1 + qb2 + b3 = 0 and tan � =

p

q
(4)

Using Equations 3 and 4, the 3-D planar surface orientation can be completely recovered.
In the next section we describe how the vanishing point coordinates~V can be estimated
from local spectral information.

3 Projective Distortion of the Power Spectrum

The spectral representation of a signal, normally termed thespectral density function
or power spectrum, describes the energy distribution of the signal as a function of its
frequency content. The power spectrum representation of a imagef(x; y) may be de-
fined as the Fourier transform of image autocorrelation (which is always non-negative by



British Machine Vision Conference 329

definition). We commence by considering the power-spectrum in the object-centred co-
ordinate system of the texture plane. Ifut andvt are the frequencies in thext andyt
directions, then the power spectrum in the texture plane is given by

Pt(ut; vt) = T1T2

p1X
k=�p1

p2X
l=�p2

rx(k; l)� exp[�j2�(kuT1 + lvT2)] (5)

hererx(k; l) is the autocorrelation function of the image.
Our overall goal is to consider the effect of perspective transformation on the power-

spectrum. If~Ui = (ui; vi)T and ~Ut = (ut; vt)T are, respectively, the image-plane and
texture-plane frequencies, then they are related to one-another by a frequency-domain Ja-
cobian [2]. In practice, however, we will be concerned with periodic textures in which the
power spectrum is strongly peaked. In this case we can confine our attention to the way
in which the dominant frequency components transform. If the peaks are narrow, then
we can restrict ourselves to considering the transformation of instantaneous frequency
components rather than the complete power-spectrum. Under this assumption, the corre-
sponding transformed viewer-centred frequency is given by

~Ui = J tS ~Ut (6)

whereJ tS is the transpose of the Jacobian of the inverse perspective transformation of co-
ordinates. As a result, the instantaneous frequency peaks transform with the matrix [2]

J tS =
�k2 sin�

h

"
xi cos �2 + yi sin � cos � �xi sin � cos � cos � + yi cos �2 cos �

xi cos � sin � + yi sin �2 �xi sin �2 cos � + yi cos � cos � sin �

#

+k

"
cos � sin � cos �

sin � cos � cos �

#
(7)

In the next Section we will use (7) to establish some properties of the projected spec-
tral distribution in the viewer-centred co-ordinate system. In particular, we will show
that contours of equal total power correspond to lines that connect points of equi-distance
from the vanishing point. We will also demonstrate that lines radiated from the vanishing
point connect points with identically orientated spectral distributions. In the next sections
we will exploit these two properties to develop a geometric algorithm for recovering the
image-plane position of the vanishing-point, and hence, estimating the orientation of the
texture-plane.

4 Image-plane Spectral Moments

In this section, we are interested in the properties of isotropic and homogeneous textures
under perspective projection onto the image plane. There are two properties, that inter-
est us. The first of these is the distribution of power-density. The second property is the
distribution of the spectral orientation. In this section we will demonstrate that the for-
mer allows us to estimate tilt direction, while the latter is related to the position of the
vanishing-point.
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4.1 Lines of equal power

We commence by considering the moment representation for the spectral content of an
isotropic homogeneous texture [11, 3]. Isotropic homogeneous textures have a circu-
larly symmetric spectral representation when viewed in a front-parallel direction. When
viewed under perspective projection the spectral representation becomes elliptical.

The second-order spectral momentsmpq (p+ q = 2; p = 0::2; q = 0::2) are obtained
by fitting ellipses to the two-dimensional frequency distribution [3]. In the texture-plane
co-ordinate system, the required moments are related to the power-spectrum in the fol-
lowing manner

Mpq =
X
ut

X
vt

upt (xi; yi) v
q
t (xi; yi)P (u; v) (8)

where the frequency componentsut (xi; yi) andvt (xi; yi) are obtained using the inverse
of the perspective transformation given by (6). The spectral-data can now be represented
using the moment-matrix

S2 =

"
M20 M11

M11 M02

#
(9)

The eigenvalues and eigenvectors of the matrixS2 are related to the geometry of the best-
fit ellipse. The principal eigenvector is aligned along the major axis of the ellipse, while
the second eigenvector is aligned along the minor axis. The two eigenvalues are equal to
the lengthsL of the major andl of the minor axis of the ellipse. The area of the ellipse is
equal to�4L� l. We will represent the tilt perpendicular as a straight line intercepting the
yi-axis atyo as follows:

yi =
yo sin � � xi cos �

sin �
(10)

For points lying on this line the area of the spectral ellipse and hence the power density is
proportional to:

Ai =
�

4
L� l = 1=4

(f cos � + yo sin� sin � )6m2�

f2h4 cos4 �
(11)

As a result, lines which are perpendicular to tilt direction are characterised by local spec-
tral moments of equal area. In other words, we have proved that lines of uniform power-
density on the image plane are orthogonal to the tilt direction. We can therefore recover
the tilt axis by searching for the direction of maximum power uniformity.

4.2 Lines of constant spectral orientation

We next consider the directional properties of the local power-spectra. For simplicity, we
use a rotated system of coordinates for the image plane in which the x-axis is aligned in
the tilt direction.

In our rotated system of co-ordinates,J tS simplifies to:

J tS = k

�
xi sin� � 1 yi sin� cos �

0 � cos �

�
(12)
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wherek = �
h

(f cos�+xi sin �)
. From (12) and considering the relation given by Equa-

tion 6, the orientation of the dominant spectral component is given by:

tan� =
vi
ui

=
(f cos� + xi sin�)vt
fut � yivt sin�

(13)

From (13), the equation of the line of constant orientation, i.e.,� is:

yi = �

xi
tan�

+ f
ut tan�� vt cos �

vt sin� tan�
(14)

For a given value of�, this equation represents a line point to the vanishing pointV .
The texture plane spectral frequencyUt = (ut; vt) is constant due to the homogeneity
assumption. As a result, each line connects points on the image plane whose the local
spectral distribution have uniform spectral angle�. These lines will intercept at a unique
point which is the vanishing point in the image plane in terms of the local spectral repre-
sentation. The vanishing point co-ordinates are"

x1

y1

#
=

"
�f cos�

sin �

utf

vt sin �

#
(15)

As a result, we can find the vanishing point coordinates in the image plane by connecting
points which have a uniform spectral angle.

We meet this goal by searching lines for which the angular correlation between the
spectral moments is maximum. To proceed we adopt a polar representation for the power
spectrum. SupposePr�(r; �) is the power spectrum in polar coordinates wherer =p
u2i + v2i is the radial variable and� = arctan(vi=ui) is the angular variable:

P�(�) =

Z 0

r

Pr�dr (16)

The angular distribution of spectral power at any given image point can be matched against
those of similar orientation by maximising angular correlation. For the purpose of match-
ing we use the linear correlation:

� =

R
�
P�(�)P 0

�(�)d�R
�
P�(�)d�

R
�
P 0

�(�)d�
(17)

HereP�(�) andP 0

�(�) are the two angular distributions being compared. The points with
the highest values of� can be now connected to determine a line pointing to the direction
of the vanishing point.

5 Vanishing Point Detection

The main contribution in this paper is to use the two properties outlined in the previous
section to develop a geometric algorithm for estimating the vanishing point for a textured
plane viewed under perspective geometry.

We commence by generating an isocontour map based on the local spectral radial en-
ergy. This isocontour map reflects the constancy of the zero density gradient over lines
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(a) (b) (c)

(d) (e)

Figure 1:(a) Unprojected homogeny texture; (b) Local power spectral content of (a); (c) Perspec-
tive projection of (a); (d) Projected Contour plot of lines of equal spectral power; (e) Two chosen
reflected symmetric points lying at a line of same spectral power; (f) Lines of same spectral angle
pointing to the direction of the vanishing point.

perpendicular to the tilt direction as described in Section 4.1. We fit straight lines over
the spectral density isocontour map and determine the tilt direction� . In the next step
we choose any point on one of the best fitted isocontour lines. The angular descriptor
of this point as given by equation 16 is correlated to the angular descriptor for a sam-
ple of points over the image and the points with maximum correlation are obtained. We
fit again straight lines using these maximum correlated points to determine the equation
of the line pointing to the vanishing pointV . Now, we repeat the angular description-
correlation procedure to determine another line pointing to the vanishing point. The in-
tercept coordinates of these lines will be the coordinates ofV . Finally, we determine the
planar surface orientation based on the normal vector fromV using Equations 3 and 4.
The steps employed are summarised as follows.

Summary of Algorithm

1. Generate an isocontour map for the local spectral radial energy.
2. Fit straight lines to the isocontour data.
3. Determine the tilt direction line using the best fitted lines.
4. Determine the vanishing point by triangulating the lines of maximum spectral angular correla-
tion.

Figure 1 shows the main steps followed by our method to estimate planar surface ori-
entation. In Figure 1a we show a homogeneous texture in the front-parallel view. Figure
1b shows the corresponding power-spectra at a representative image-plane location. In
the case of the front-parallel texture, the dominant spectral components are associated
with the repetitive structure of the texture in the x and y directions. There are also weaker
peaks associated with both the harmonic structure of the texture and the diagonal patterns
in the texture. Figure 1c presents the texture projected onto the image plane under per-
spective transformation. A contour plot is shown in Figure 1d describing the lines with
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same total spectral energy which are perpendicular to the tilt direction. In Figure 1e, the
two spectra are located symmetrically about the axis of perspectivity. It is clear that the
spectra themselves are reflected versions of one-another. In Figure 1f the constancy of
the local angular spectral configuration can be clearly observed. The figure shows vari-
ous local power spectrum responses over a line of same angular configuration. Moreover,
the plot shows how the area of the spectrum decreases with increasing distance from the
vanishing point.

6 Experiments

Finally, we provide some results which illustrate theaccuracy of planar pose estimation
achievable with our new shape-from-texture algorithm. We commence with some exam-
ples for the synthetic regular texture which we have already used to illustrate the estima-
tion of spectral moments. Figure 2 shows the synthetic texture in a number of poses with
the slant and tilt angles annotated. In Table 1 we list the actual and computed pose an-
gles for the different orientations of the texture plane. The average error in tilt angle is 5
degrees while the average error in slant angle is 10 degrees The main systematic effect is
that the errors are significant for both small and large slant angles. This is attributable to
aliasing effects in sampling the spectral moments. There is no systematic structure to the
tilt errors. Turning our attention to more realistic imagery, the rows in Figure 3 shows dif-
ferent poses of two natural textures. The slant and tilt angles are again appended. Table
2 lists the actual and computed pose angles. The agreement is generally good, although
there are problems with row e, where we again encounter aliasing effects.

(a) (b) (c)

(d) (e) (f)

Figure 2: Artificial texture images (a)� = 45o and� = 45o; (b) � = 30o and� = 45o; (c)
� = 60o and� = 70o; (d) � = 45o and� = 60o; (e) � = 75o and� = 135o; (f) � = 80o and
� = 225o
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TABLE 1 - Actual� Estimated slant and tilt values (Artificial Images)
actual values estimated values absolute error

image slant (�) tilt(� ) slant(�’) tilt( � ’) �’ � ’

(a) 45 45 38.79 46.6 6.21 1.6
(b) 30 45 21.2 49.9 8.8 4.9
(c) 60 70 57.9 71.9 2.1 1.9
(d) 45 60 45.2 64.9 0.2 4.9
(e) 75 135 68.9 134.5 6.1 0.5
(f) 80 225 76.1 232.2 3.9 7.2

(a) (b) (c)

(d) (e) (f)

Figure 3: (a) Natural texture image 1 (b)� = 45o and� = 45o; (c) � = 30o and� = 0o; (d)
Natural texture 2 (e)� = 60o and� = 70o; (f) � = 75o and� = 135o

TABLE 2 - Actual� Estimated slant and tilt values (Proj.Natural Images)
actual values estimated values absolute error

image slant (�) tilt(� ) slant(�’) tilt( � ’) �’ � ’

(b) 45 45 51.0 49.5 6.0 4.5
(c) 30 0 20.9 2.2 9.1 2.2
(e) 60 70 79.1 82.2 19.1 12.2
(f) 75 135 81.3 138.2 6.3 3.2

7 Conclusions

We have described a simple algorithm for estimating the slant and tilt of textured planes
viewed under perspective geometry. The method searches for two sets of lines. The
first of these connect points of equal spectral power and are oriented in the tilt direction.
The second set of lines connect points which have identically oriented spectral moments.
These lines intercept at the vanishing point.

The method appears to produce reasonableaccuracy. The simplicity of the model
and the absence of any type of ambiguity is another clear advantage. Methods based on
vanishing point have been developed using direct measurements on the image plane [8,
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12, 9]. This method is completely independent on such direct procedure. There is no
necessity to know the size or shape of the textural primitives.

There are a number of ways in which the ideas presented in this paper can be ex-
tended. In the first instance, we are considering ways of improving the search for the two
sets of lines. Specific candidates include Hough-based voting methods. The second line
of investigation is to extend our ideas to curved surfaces, using the method to estimate
local slant and tilt parameters. Studies aimed at developing these ideas are in hand and
will be reported in due course.
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