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Abstract

This paper describes a system for the recovery in real-time of the pose of
moving polyhedral objects using modest hardware. A method of line track-
ing first introduced by Harris is extended to multiple calibrated cameras, and
afforced by robust methods and filtering. The system, which uses three cam-
eras a low-end commercial framegrabber and runs on single PC, has been
devised to provide simple visual feedback for the tele-operator of a force re-
flecting robot manipulator. Experimental results are given which demonstrate
the accuracy of the vision system.

1 Introduction

The aim of installing a vision system in a teleoperated workcell is to provide the oper-
ator with a simple synthetic view of objects as they move within the workcell, with the
view point and view direction under operator control. The overall goal is to demonstrate
that human operators can use visual feed-forward to stabilize otherwise marginally stable
tasks. Two important choices in the design of such a system are, first, whether to use
data-driven structural recovery methods or model-based methods and, secondly, whether
to use calibrated vision to recover Euclidean structure or un- or partially-calibrated vision
to recover structure modulo unknown projective or affine transformations. For the latter
choice, whilst there are certainly tasks in hand-eye coordination for which uncalibrated
vision is quite adequate (see for example [1, 3]), the need to function in a Euclidean
robot work space and the a priori undefined nature of the operator’s tasks suggest that
the calibrated route might be more embracing, though more inflexible. For the former
choice, though it is in the long term to recover structure before modelling, the need for
some robustness and real-time performance on modest hardware still point to a purely
model-based approach.

The visual tracking of 3D rigid objects may be subdivided into several sub-problems:
first, how to recognize the object; secondly, how to initialize its pose; and thirdly, how to
update its pose over time. In this paper we are mainly concerned with the last problem.
For the first and second we assume that objects in the scene are recognized by the human
operator, who chooses them from a library, and who can initialize the object’s pose.

For the third, the method we advance here is that of Harris [4], allowing it to be
used with multiple cameras. 3D objects are modelled by a set of control points which lie
on edges, which may be either surface creases or surface albedo markings, allowing the
corresponding lines to be detected in the image. The method assumes any pose change
required between the current estimated pose and the actual pose is sufficiently small (i)
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Figure 1: The object is modelled within its own coordinate frame B as a set of control points
lying on edges, which may be crease or albedo edges. The world and camera coordinate
frames are W and C. The aligned frame A, introduced as a notational convenience, has
the same orientation as W but has the same origin as B.

to allow a linearization of the solution, and (ii) to alleviate the problem of finding line to
line correspondences. The correspondences used are between predicted point to measured
image line, allowing search in 1D rather than 2D within the image.

The paper is ordered as follows. The next section defines the coordinate systems and
describes the method of updating pose for multiple cameras. Section 3 gives details of the
methods used to determine and filter pose robustly, to initialize pose and to calibrate the
system. Section 4 gives experimental results which show the accuracy to which pose can
be recovered using this real-time method, and Section 5 gives the results of manipulation
experiments.

2 Updating the pose of objects
2.1 Coordinate frames
As noted above, each model is described in its own object frame B by the coordinates
of a set of control points. The points may be special features (eg point lights), but more
usually are specified to lie on object edges which are geometrically fixed as either crease
edges between surfaces or albedo markings on surfaces, as sketched in Figure 1. The
underlying object need not be polyhedral.

As sketched in Figure 1, an object’s pose is one or another representation of the the
transformationfRWB ; tBWg that takes points in frame B into points into a fixed world
frame W. For example, using a non-homogeneous rotation matrix and translation repre-
sentationXW = R

W
B X

B + tBW wheretBW denotes the origin of B in W. The pose of a
camera C relative to the world coordinate system is defined in the inverse manner as the
rotation and translationfRCW; tWCg whereXC = R

C
WX

W + tWC: It is a matter of con-
venience below to introduce an aligned frame A that is aligned with W but has its origin
coincident with the object frame B:XA = R

W
B X

B:
The method of establishing and calibrating the coordinate frames is deferred to Sec-

tion 3.

2.2 Recovering change of pose
The image operations are of the sort routinely used in visual contour tracking. As each
new image is captured, the current estimate of pose (or the predicted estimate if the rate of
change of pose is modelled) is used to project the visible control points and their lines onto
the image, and a search is initiated from each control point in a direction perpendicular to
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the projected line in order to find any point on the actual imaged line in the new image.
The new pose is estimated by minimizing the control point to image line displacements.

Consider an object whose position at some instant is described in the world frame by

XW = R
W
B X

B + tBW = XA + tBW :

The object’s angular and rectilinear velocities are
 andv respectively, so that in a small
timeÆ� the object will move to a new position

XW0
= XA + (
Æ�)^XA + tBW + vÆ� :

By writing the product of the time interval and velocity screw as

Æs = Æ� [vx; vy; vz;
x;
y;
z]
>

and composing the matrix

G =

2
4 1 0 0 0 ZA �Y A

0 1 0 �ZA 0 XA

0 0 1 Y A �XA 0

3
5

the new position can be written as

XW0
= XW + GÆs :

To obtain the measurement equation, we need to transform the new positions into the
camera frame, and thence project into the image. The camera is an idealized device with
unity aspect ratio and unity focal length. In the camera frame, the modified coordinates
are related to the originals by

XC0 = XC + R
C
WGÆs :

The projection into the idealized image1 is x = �XC=ZC (where we will keepx as a
3-vector(x; y;�1)> for the moment). The change in image coordinate as the object is
moved is thus

(x0 � x) = �
h
XC0=ZC0 �XC=ZC

i
:

If the change in depth is small, so thatZC0 = (1 + �)ZC, with �� 1, then

(x0 � x) � �
1

ZC

h
XC0 �XC � �XC0

i
= �

1

ZC

�
R
C
WGÆs� �(XC + R

C
WGÆs)

�
:

But � may be expressed as

� = (ZC0 � ZC)=ZC) = ZC�1[001]RCWGÆs

and so

(x0 � x) � �
1

ZC

�
R
C
WGÆs�

1

ZC

[001]RCWGÆsXC

�
= �

1

ZC

�
R
C
WGÆs+ [001]RCWGÆsx

�
:

1The minus sign sets the ideal image plane behind the optic centre.
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The above could be used to recover the change of pose if point to point matches could
be established between several pointsx and their correspondencesx0, for example when
the control points are corners or lights. However in our work the control points used
typically lie on lines or curves, and we thus only obtain information on point-to-line or
point-to-curve matches because of the aperture problem — we know thatx0 lies on a
particular line or curve, but not exactly where.

All the information is preserved if the inner product is formed between(x0 � x) and
the unit normal̂n to the curve or line at the pointx. The measurement equation becomes

n̂>(x0 � x) = �
1

ZC
n̂>[I3 + x[001]]RCWGÆs

or, using 2-vectors for image quantities,

n̂>(x0 � x) = �
1

ZC

[ nx ny ]

�
1 0 x
0 1 y

�
R
C
WGÆs

As Figure 2 illustrates,̂n>(x0 � x) is the perpendicular distance between the curves,
which we will assume has a radius of curvature much greater than this distance. Note that
the choice of the positive direction ofn̂ is arbitrary.

x

d̂

n̂

Predicted Edge

Measured Edge

Control Point

x

Figure 2: Because of the aperture problem, only the perpendicular distance along n̂ is
measureable. It is not necessary to search for the edge along n̂: it is quicker to search
along one the eight cardinal directions ^d, here a diagonal.

2.3 Extension to several cameras
Because the pose updating is model-based, there is no particular need when extending
the method to multiple cameras to establish correspondence between control points, and
each camera can be treated independently in terms of measurement. The independence
of the cameras has no particular impact on image search, as it is already 1-dimensional.
Moreover, because the image search is between point and aline and involves the aperture
problem, there is no possibility of reducing the search to zero dimensions.

A second benefit of independence between views is that it provides basic robustness to
complete obscuration and loss of image without recourse to costly checking procedures.
This is of value because it allowsunmodelledobjects to enter the workspace.

With several pointsi and camerasc we form the system2
664

...
aic
...

3
775 Æs =

2
664

...
mic

...

3
775



British Machine Vision Conference 887

wheremic = n̂>ic(x
0

ic � xic) andaic is the row vector

�
1

Zc

i

n̂>ic[I3 + xic[001]]R
c

WGi

This linear system,AÆs = m, is solved by first applying a robust estimator (least me-
dian of squares) to eliminate outliers, and then using singular value decomposition on the
remaining inliers.

3 Implementation

The above method has been implemented for polyhedral objects viewed by up to three
cameras. The three monochrome video streams are syncronized and captured as the RGB
planes of a PCI bus colour framegrabber. The framegrabber is hosted by a 166 MHz
Pentium running under the QNX real-time OS.

Exploitation of this relatively simple method of pose updating relies on finding good
point to line matches in the image, which in turn requires methods to be in place for
calibration, pose initialization, image search, and pose filtering.

As the last of these is most closely related to pose updating, we deal with this first,
and then take the others in order.

3.1 Robust determination and filtering of absolute pose
As noted above the linear systemAÆs = m, is solved by first applying a robust estimator
(least median of squares) to eliminate outliers, and then using singular value decomposi-
tion on the remaining inliers.

In a number of comparitive tests in the vision literature, random sampling methods
have proved the most successful for robust estimation of properties. Here, because the
standard deviation is not knowna priori, robust estimation is performed using Rousseeuw’s
Least Median of Squares (LMS) algorithm, rather than Fischler and Bolles’ RANSAC. In
repeated trials, the minimal groups of 6 matches are randomly selected to determine a
value forÆs, and this value used to determine the median of the magnitudes of the devia-
tionsei = jmi �m�tted

i j. The solution with the smallest median is used to estimate the
standard deviation of the data exploiting the fact that

p
medjeij=�

�1(0:75) is an asymp-
totically consistent estimator of� when theei are distributed likeN(0; �2), where� is
the cumulative distribution function for the Gaussian pdf.

� = 1=��1(0:75)
p
medjeij = 1:48

p
medjeij :

Then measurements are split between inliers and outliers using

i 2

�
inliers if jeij � 1:96�
outliers otherwise

:

In experiment, the� derived was typically of order0:03 in the ideal image with focal
length unity. Our cameras have focal length around 3000 pixels. Nowjeij is a measure
of the distance from the predicted edge to the actual edge. Using the Rousseeuw formula
in reverse we findjeij � 1:2 pixel in the physical image. This is entirely commensurate
with the edge search mechanism, which operates only to�1pixel accuracy. The outliers
are excluded to the final least squares fit for the change in poseÆs. The fit is made using
singular value decomposition.
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Thechangein pose is used to recomputeabsolutepose. Whilst translation requires a
simple addition,

t(� + Æ�) = t(�) + Æ�v ;

updating the angle-axis to better than first order is more involved. It is of course possible
to write down angle-axis update rules, but they can be expressed using standard quaternion
notation as

Æ
Æ

q = (cos(jÆaj=2); sin(jÆaj=2)Æ̂a)
Æ

q(� + Æ�) = Æ
Æ

q:
Æ

q(�) :

from whicha(� + Æ�) is found by back-transformation.
In the present implementation each new absolute pose measurement is combined with

a running estimate using a constant velocity Kalman Filter with twelve components in the
state

p� = (tx; ty; tz; ax; ay; az; _tx; _ty; _tz; _ax; _ay; _az)
> :

Although similar to other filters for pose tracking in the literature, its performance
has proved less than satisfactory in our teleoperative applications. More recent studies
by Heuring and Murray [6, 7] show that muscular motions (specifically those of the hu-
man head) are better modelled by describing the velocity as Ornstein-Uhlenbeck process,
rather than the Wiener process implicit in the constant velocity model.

3.2 Calibrating the system
The location of the world coordinate frame W is arbitrary, but to gain benefits from statis-
tical centring its origin should be placed near to the point of closest approach of the optic
axes of the cameras being used to view the scene. (There is of course no requirement for
the optic axes to meet at a point.) To establish W’s location with respect to cameraj, and
to derive the imaging properties of cameraj, we need to measure the image coordinates
x
j
i of a number of non-coplanar points whose 3D positionsXW

i are specified in the world
coordinate frame, and to minimise the image error

min
uj

X
i

h
x
j
i � x(uj;X

W
i )
i2

After compensating for radial distortion and neglecting the skew between image axes, the
parameter vectoru has ten degrees of freedom, comprising four intrinsic camera param-
eters (focal lengths and principal pointfx; fy; x0; y0) and six extrinsic parameters (three
rotational represented by angle-axis vectora and three translational componentst):

u = (fx; fy; x0; y0; ax; ay; az; tx; ty; tz)
> :

A starting estimate for this non-linear minimization is obtained using a QR decomposition
of the projection matrix ([5], itself found using the usual linear methods. Care is taken to
statistically centre the scene and image data prior to fitting.

Two methods of specifying the world points are used. The first, on which the results in
this paper are based, uses the usual chequerboard pattern imposed on a cube. The second
uses the telerobotic arm as a moving pointer.
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3.3 Model pose initialization
Once added to the list of active objects, pose is initialized using stereo in any two of the
three available views, with correspondence specified by the operator. More recent work
by Heuring [6] uses search constrained by motion.

4 Experimental results

Figure 3 shows views from the three cameras of a polyhedral object in the workspace. The
axes shown in the view from camera (0) are the object axes. Experiments are performed (i)
to explore the relative and absolute accuracies of pose recovery, (ii) to derive the frequency
response, and (iii) to explore the efficacy of the virtual view in a manipulation task.

Y

X

Z

(0) (1) (2)

Figure 3: Views from cameras 0, 1 and 2.

4.1 Relative accuracy of single and multiple cameras
The object’sx-axis was first aligned with the world frame’sx-axis. The object was then
rotated about this axis in steps of10Æ and the rotational and translational components of
pose recovered.

The rotational results for three cameras and one camera are given in Figures 4(a)
and (b) respectively. To obtain a measure of error, each point and error bar in the graph
represent the average and standard deviation of four measurements. For three cameras,
the slope of the plot of recovered rotation angle vs. set rotation angle was1:005� 0:009,
and the mean change in rotation between steps was found to be(10:1� 2:1)Æ. (The zero
offset of 33Æ arises trivially because no attempt was made to align they- andz-axes.)
For the single camera (camera 1), pose recovery fails at about140Æ because of lack of
data — but this is particular to this example. Of more general interest is that there is
increased error in the recovered rotation, but not dramatically so: the mean change in
angle is(9:6� 4:0)Æ.

More revealing is the comparison between recovered translational parameters, shown
in Figure 5. For three cameras, thety andtz are, as expected, close to constant and zero
throughout, andtx is close to a constant offset. (Again the offset arises trivially because
no attempt was made to align the origins of thex�axes.) However, the components
recovered from camera 0 alone are evidently erroneous but highly correlated.

Taking the values recovered in the three-camera experiment as veridical, the error in
the translationÆtj was found over the rotation range�20Æ to+130Æ. The eigenvalues of
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Figure 4: Recovered rotation versus set rotation for (a) 3 cameras and (b) 1 camera.

the scatter matrix
M =

X
j

[Ætj � �Æt][Ætj � �Æt]>

were found as�1 = 1:2� 10�1, �2 = 2:6� 10�1, and�3 = 1:9� 10+2, indicating that
the translation was determined with similar accuracy along the directions of eigenvectors
e1 ande2, but with much poorer accuracy along the direction of the third eigenvector in
the W frame,e3 = (+0:711;�0:428;+0:558). Multiplying this by the rotation matrix
R
C
W for the single camera (camera 1) gives the direction in the camera’s frame as

eC3 = (�0:201;�0:416;+0:980) :

This, as expected, is close to the optic axis of the single camera.
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Figure 5: Recovered translation components versus set rotation for (a) 3 cameras and (b)
1 camera to the same scale.

A second comparative run was made using translational rather than rotational move-
ment. The object was moved some 200 mm in steps of(10 � 0:5) mm along a straight
line close to the world frame’sz-direction and certainly in the world’sy; z-plane. Figures
6(a) and (b) compare the recovered translation components for 3 cameras and 1 camera
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respectively. Again, each point gives the mean and standard deviation of several mea-
surements. For three cameras, the step size recovered was(9:8� 0:9) mm, whereas that
for one camera was(9:2 � 4:2) mm. Assuming the values obtained using three cam-
eras to be veridical, errors were computed for the one camera case and, using the same
eigen-analysis, the errors found to lie predominantly along the optic axis of the single
camera.
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Figure 6: Recovered translation components versus set translation for (a) 3 cameras and
(b) 1 camera to the same scale.

4.2 Teleoperation experiments
The system has been used for a variety of simple manipulation experiments. Figure 7(a)
shows views of the recovered wireframes of a peg and hole during an insertion task and
Figure 7(b) shows the inserted peg from a number of view points. The obvious misalign-
ment is real, and not systematic noise — the peg has sufficient clearance around it when
in the hole to twist by several degrees.

5 Discussion

We have described a system for the recovery in real-time of the pose of moving objects
using modest hardware. We make use of multiple calibrated cameras which we have
demonstrated gives a significant improvement in the accuracy of the recovered pose over
single camera methods such as [4, 9].

In the context of teleoperations the system provides two major benefits. In many
cases, the information required for remote manipulation is not so much dependent the the
quality of visual representation as uponviewpoint. Our system provides a prompt and
rapidly updated representation which can be used to generate novel viewpoints to assist
the operator.

Furthermore, visual data provides information which is complementary to the force
data which is typically available. In particular, the accurate position and velocity informa-
tion can be used as apredictorof impending collisions. For teleoperative force-feedback
systems, the aim of an impact controller is to allow the demands of the operator to be
followed, which are often designed to impact with the environment, but to prevent a large
impact transient. Some previous work has addressed the issue of transition control [8, 10].
We are currently investigating the use of our vision system with recent results due to
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(a) (b)

Figure 7: (a) Recovered wireframes during an insertion task. (b) Views of the peg in the
hole.

Daniel and McAree [2] who showed how a transition controller can be designed which
uses vision as a feed-forward sensor during transition control such that the robot trajec-
tory is modified to maximise the performance of the system yet leave the force response
unchanged (controlled by a tele-operator once impact has occurred).
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