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Abstract

In images with low texture the performance of conventional dense stereo
can be poor. The usual solution to this is to use a large window but this
itself can be problematic as the large window can blur important features
and hence lead to errors in the disparity estimate. Here it is shown that, not
only do connected set morphology operators overcome this problem, they
perform best in regions of low texture. A further observation is that, since
the operators give a heirarchical decompostion, there is a possibility of not
only using these operators to choose a new window, but also to motivate a
new matching method.

1 Introduction

This paper discusses some graph morphology operators and shows how they may be used
to tackle the problem of obtaining dense disparity maps from binocular stereo.

A key stage in the stereo process (see [1,2] for example) is the identification of match-
ing features: the correspondence problem. Once a match is obtained the relative displace-
ment of the features from image to image, called the disparity, can be used to compute the
depth. In sparse stereo, features that are likely to be robust are identified and used to com-
pute a sparse depth map. If a dense depth map is needed then either it must be inferred
by fitting models to the sparse data, or a method of producing dense stereo is needed.
There are several dense stereo methods including optic flow [3], phase-base methods [4],
dynamic programming [5], and correlation techniques. In this paper we use the SSD
method [6] which is based on correlation.

In its simplest form the the SSD method assumes that matching points (conjugate
pairs) lie along raster lines1. In this case the similarity of a region in the left imagel(x;y)
to regions in the right-hand imager(x;y) is computed as an error

e(d(x;y)) = ∑
i; j2W

(l(x+ j;y+ i)� r(x+d+ j;y+ i))2 (1)

The disparity estimate is that value ofd(x;y) that minimises this error. Minimising (1) is
equivalent to maximising the crosscorrelation between left and right image windows but,
in practice, minimising the SSD is often preferred as the normalisation of (1) is simple.

1This is not an important restriction since calibrated cameras may berectifiedto produce horizontal epipolar
lines.
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Since (1) depends on the mean intensity it is usual to prefilter both images with a Laplace
of Gaussian (LoG) filter to give some robustness against intensity variations between
images.

Figure 1 illustrates some common problems with the SSD method. At the top is the
left-hand image from a pair taken from the Carnegie Mellon Calibrated Imaging Labo-
ratory data set [7]. Below it is the disparity map produced by the SSD algorithm with a
window size of 3 by 3. The LoG filter has a width,σ, of 4 and a support of 16 pixels. The
disparity has been interpolated to sub-pixel precision using a quadratic fit. In Figure 1 the
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Figure 1: Top: the left of two original images that form a stereo pair. Bottom: typical
disparity map produced by SSD method using quadratic sub-pixel interpolation.

disparity map has noise. This is caused by either a failure to find a match or by guessing
wrongly amongst many possible matches. The first case, failure to match, arises if the
window is too large, there is too little texture, or the geometric distortion between the two
images is significant. The second case, choosing the wrong match amongst many, arises
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if the window is too small or the texture is periodic. Solutions to these problems usually
amount to: restricting the search space; using multiple views; or choosing a different win-
dow. The first option is applicable if prior information is available and the second option
requires several cameras. Here we have binocular stereo with no priors and so altering the
window is the best option. One might alter its width [8], its shape [9] or select only the
most reliable of windows – the sparse-stereo approach.

A related problem is the accuracy of edge location – the disparity map in Figure 1
is blurred by the window. This effect encourages the use of a small window but small
windows are precluded for the reasons given above. What is needed is a method for
choosing the window from a segmentation of the image.

2 The granule method

The approach used here is to employ a robust connected-set filter [10, 11] to identify flat
zones in the images and then match these large zones conventionally. An outline of the
filter algorithm follows but the key point is that it removes objects of smallarea and
preserves larger objects complete with their edges. Its basis is the representation of an
image as a graphG= (V;E). The set of edgesE describes the adjacency of the pixels
(which are labeled via the verticesV). In one-dimension the image graph is a list [11] but
for a multidimensional image the graph defines the neighbourhood of a particular pixel.
LetCs(G) be set of connected subsets ofG with spixels. Elements of this set that contain
a particular pixel are denotedCs(G;x) and defined as

Cs(G;x) = fξ 2Cs(G)jx2 ξg: (2)

The operation of this graph may illustrated with reference to Figure 2. In this caseV =
f1;2; � � �16g and , if the graph is four-connected,E= ff1;2g;f1;5g;f2;6g; � � �g. Figure 2
also shows examples of all connected sets with two elements that contain a particular pixel
(C2(G;6) in this case) and some ofC3(G;6) (for clarity some subsets are not shown). The
important point is that, for an object of areas, there will always be elements ofCr(G;x)
wherer � s that do not cross the object boundary so it is possible to find subsets of
Cr(G;x) that fully supportx from entirely within the region.
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Figure 2: Example image (left) and the set of all connected subsets of 2 pixels contain-
ing pixel 6 in a four-connected sense,C2(G;6) (centre), and some example elements of
C3(G;6) (right)

.
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Figure 3: Some example channels formed from the image in Figure 1. From left top to
bottom right are channels formed from scales 8-16 pixels, 32-64 pixels, 4096-8192 pixels
and 8192-16384 pixels.

For each integers� 1 the operatorsψs, γs, M s, N s : ZV ! ZV , are defined as

ψs f (x) = max
ξ2Cs(G;x)

min
u2ξ

f (u); (3)

γs f (x) = min
ξ2Cs(G;x)

max
u2ξ

f (u); (4)

Ms = γsψs; (5)

N s = ψsγs (6)

Ms is a greyscale opening followed by a closing defined over a region of sizes and
N s is defined vice versa. AnM-sieve of f is the sequence( f (s))∞

s=1 given by f (1) =
M1 f ; f (s+1) = Ms+1 f (s), s� 1. TheN-sieve is defined similarly. The output of such a
processor is usually taken to be the set ofgranule functions

d(s) = f (s)� f (s+1) (7)

for each integers� 1. The granule functions form the scale selection surface and non-
zero connected regions within granule functions are calledgranules. Granules have sharp
edges and, at a particular scale, the same area. A fast algorithm exists [10, 11] and it
provides a robust scale-space decomposition [12].

The sieve outputs granule images of which there are potentially very many (a 100 by
100 pixel image can be analysed at 10,000 scales). These data may be reduced through
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the use ofchannelswhich are images formed by the sum of granule images over a range
of scales. A full set of channels may be summed to retrieve the original image. Figure 3
illustrates some of these channels. Each image shows the absolute granule amplitude
scaled to occupy the full greyscale range for each image. Because features have charac-
teristic scales they appear in a restricted range of channels – the dots on the background
for example appear in the channel showing scales 8 to 16 pixels.

The operation of the sieve as a simple noise removing filter is illustrated in Figure 4
in which the disparity map of Figure 1 has been filtered to scale 100. This is of course
merely an enhancement to an existing method that itself operates using a fixed window
and amounts to the removal of outliers. An alternative to this simple approach follows
from the observation that the granules illustrated in Figure 3 often correspond to objects.
This follows from Witkin’s observation that real objects often correspond to intensity
extrema [13] and from the sieve algorithm which operates by “slicing-off” extrema. We
therefore seek to use the sieve to choose the window – the granule window method.

5 10 15 20 25 30

Figure 4: Sieve filtered SSD disparity map

The granules illustrated in Figure 3 define regions that appear to correspond to objects
in the scene. We use these regions as the window in the SSD method (1). The algorithm
proceeds as follows: the images are simplified using theM-sieve algorithm at a set of
scales (here scales at integer powers of two are used). The flat zones in these sieved im-
ages then form the window functions for the normalised SSD method (the normalisation
uses the power in the right and left windows). The hypothesis is that all pixels in any one
connected flat zone will have the same disparity. Of course large granules might contain
smaller granules of a different disparity but here we compute, for each granule, the SSD
error per pixel. At any pixel the algorithm selects the granule window with the lowest
SSD error per pixel. The result is a dense map for the entire image.
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3 Results

The results reported here compare the new method against a fixed square window SSD
algorithm and the adaptive window SSD of Kanade and Okutomi [8]. The implementation
of the fixed square window SSD is our own but the adaptive window SSD was compiled
directly from source code from Kanade’s website. This availability and the fact that the
adaptive window is based on some statistical analysis makes it a reasonable benchmark.

The first comparison method reported here is based on modified random texture stere-
ograms [9, 14]. The stereograms were two greyscale 60 by 60 pixel images containing
a background with zero disparity and a square 10 by 10 pixel foreground region with a
disparity of 12. The foreground image has a mean intensity of 120 and the background
a mean intensity of 60. Both regions had a Gaussian random texture superimposed with
the standard deviation given in Table 1. Further, each image had either additive Gaussian
noise of a specified standard deviation or impulsive replacement noise of random ampli-
tude in the range (0,255) with a specified density. In all cases the resulting images were
clipped in the range (0,255).

Gaussian texture
σt = 0 σt = 1 σt = 10

σg 0 0 0
Gaussian 0.1 0.1 0.1

noise 1 1 1
10 10 10

pr 0 0 0
Impulse 0.001 0.001 0.001
noise 0.01 0.01 0.01

0.1 0.1 0.1

Table 1: Standard deviation,σg of added Gaussian noise and probability of replacement,
pr , for impulsive replacement noise.

The mean and standard deviation of the absolute error of the disparity maps created
using the fixed square window SSD, the adaptive window SSD and the new granule win-
dow SSD are shown in Figure 3. Each point shows ensemble statistics taken over 60 runs
using the parameters in Table 1. Some notable features are:

1. At high levels of texture the Kanade-Okutomi adaptive window SSD performs the
best in both Gaussian and impulsive noise.

2. The granule window SSD usually performs better than the fixed square window
SSD technique when the image is corrupted by impulsive noise. This is because the
granule method favours the largest window possible consistent with the smallest
SSD error. As a result the large error caused by an impulse is minimised. The
Kanade-Okutomi adaptive window SSD performs well in impulsive noise at lower
noise densities since it is possible to choose a window which does not contain a
noise spike.

3. At high levels of Gaussian noise the granule window SSD performs worse than the
fixed square window SSD. This is because at high levels of noise the granule-based
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windows become distorted (they have a “feathery” appearance) and the error due to
this effect exceeds that due to the imposition of a square window.

4. In regions of low or no texture the granule window SSD performs better than the
fixed square window SSD or the Kanade-Okutomi adaptive window SSD regardless
of noise type.

In short we find that the adaptive and the granule windows both perform better than a
fixed square window, but that the granule window works best on textureless regions.

The three methods were also tested on real images. The results are shown in Figure 6
in which disparity estimates for fixed square window SSD, the Okutomi and Kanade
adaptive window SSD and the new granule window SSD are shown. An analysis of the
ground truth points provided with these images [7] shows that the new granule method
returns either the same or more accurate disparities than the SSD technique.

The granule method, illustrated at the bottom right of Figure 6, has disparity regions
with fewer outliers than any of the other methods and the disparity regions have sharp
edges.

4 Discussion

Morphological connected set operators can be very effective at choosing windows for the
SSD methods. The new granule method is most effective on textureless regions where the
conventional SSD method performs poorly.

An alternative approach might be to use the greyscale segmenation and rules to im-
prove the disparity map—similar to the approach taken by Liu and Przewozny [15] but
we prefer our method since it has fewer heuristics.

A refinement to the granule window method might be to perform the matching using
a tree representation of the granule domain, or to match directly in the granule domain.
Figure 7 shows a very simple image and its decomposition into granules. The granules
illustrated in Figure 7 may be represented as a tree. In this case in the centre of the image
is a scale 1 granule which is contained within a scale 9 granule which is contained within
the root granule (scale 16). If granules are represented by nodes and containment by
directed vertices then a tree results. Such a tree may be useful to overcome the limitation
of fixed channel boundaries since it is possible to parse the tree and collapse low intensity
granules into larger ones [16]. This operation has been performed in Figure 8. At the top
is a stereo pair of two very simple images and below them are their corresponding trees.
The root node corresponds to the image centre; the next highest node the centre of the
granule associated with the television and so on. We are currently investigating how to
perform stereo matching on trees like these directly.

References

[1] U.R.Dhond and J.K.Aggarwal. Structure from stereo – a review.IEEE Trans. Systems Man
and Cybernetics, 19(6):1489–1509, December 1989.

[2] A.Rosenfeld. Survey: Image analysis and computer vision: 1995.Computer vision and image
understanding, 63(3):568–612, May 1996.



British Machine Vision Conference 829

Gaussian noise Impulsive noise

Texture
with
σg = 10

0 0.1 1 10
−2

0

2

4

6

8

10

12

14

16

18

Noise Magnitude

granule window       
square window        
kanade−okutomi window

0 0.001 0.01 0.1
−2

0

2

4

6

8

10

12

14

16

18

Noise Density

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

granule window       
square window        
kanade−okutomi window

Texture
with
σg = 1

0 0.1 1 10
−2

0

2

4

6

8

10

12

14

16

18

Noise Magnitude

granule window       
square window        
kanade−okutomi window

0 0.001 0.01 0.1
−2

0

2

4

6

8

10

12

14

16

18

Noise Density

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

granule window       
square window        
kanade−okutomi window

No texture

0 0.1 1 10
−2

0

2

4

6

8

10

12

14

16

18

Noise Magnitude

granule window       
square window        
kanade−okutomi window

0 0.001 0.01 0.1
−2

0

2

4

6

8

10

12

14

16

18

Noise Density

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

granule window       
square window        
kanade−okutomi window

Figure 5: Mean absolute error and standard deviation of absolute error for 60 runs with
parameters in Table 1.
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Figure 6: Dense disparity maps created from a pair of images of which the original is top
left. Top right is the square-window SSD, bottom left is the Kanade-Otukumi adaptive
window; and bottom right is the granule method
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Figure 7: Granule decomposition of a simple image. The top row shows the orignal and
the result after sieving to scale 2 and 10. The bottom row shows the granule images (the
difference between successive images).

Figure 8: A stereo pair of images (top) showing (bottom) scale-space trees associated
with each image
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