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Abstract

Temporal stereo vision algorithms can offer improved robustness, however,
this can only be delivered after several frames of a stereo image sequence
have been processed. We present a new method of bootstrapping temporal
stereo which can overcome such start-up problems by applying additional
coarse-to-fine pre-processing to the first few images in a stereo sequence. To
gauge the performance of temporal bootstrapping, we have employed a new
algorithmic evaluation technique that uses statistical and physical scene
modelling to produce accurate result errors data. The performance of the
bootstrap temporal stereo algorithm, as determined by the automatic
evaluation technique, as well the results from real stereo image sequences, are
presented.

1 Introduction

In [3], the issue of robustness in stereo vision was tackled with the introduction of a
temporal stereo algorithm which used a feedback loop to integrate data over a sequence
of stereo image pairs. In this work, we address the problems with robustness that are
present in temporal stereo at start-up; when the initial few frames of a stereo sequence
are being processed. Our new coarse-to-fine (CTF) bootstrap algorithm allows a
temporal stereo algorithm to produce more robust data from the very first frame of an
image sequence.

In response to our need to evaluate the stereo bootstrap algorithm, a new stereo
evaluation framework has been developed which can test the performance of a stereo
algorithm on complex scenes containing multiple objects and motions. By using a
combination of artificial scenes generated by image rendering software, and
corresponding scene geometry models, any 3-D result produced by a stereo algorithm
can be analysed and an accurate outlier count given. The new algorithmic test-bed goes
some way to solving the problems of algorithmic benchmarking, because it allows the
relative performance of algorithms to be compared directly without the need for human
interpretation of image data or results.

In Section 2, we present a short introduction to temporal stereo followed by a
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description of the CTF bootstrap process in Section 3. Section 4, outlines the new stereo
evaluation technique and how it was employed in assessing the performance of CTF
temporal stereo. Section 5 contains the experimental results for the performance of the
bootstrap temporal stereo algorithm on both the artificial and real image sequences,
together with a statistical performance evaluation as determined by the automatic
evaluation technique.

2 Temporal Stereo

The principal problem in stereo vision is the correspondence problem [2]. Conventional
stereo vision algorithms are usually single cue methods, for example matching using
edge characteristics, which can often be unreliable due to insufficient disambiguation
power. In an effort to improve the robustness of stereo vision, there is growing
awareness that temporally integrating stereo match data can increase the probability of
finding unambiguous matches by allowing the correspondence task to use two or more
image and motion cues. Examples of several temporal stereo techniques which have
been suggested are; [3], [20], [9], [19], and [10]. All these works agree that the inclusion
of temporal constraints within a stereo algorithm can reduce the probability of a
mismatch and, hence, improve the robustness of the 3-D result.

This work follows on from the work in [3]; a stretch correlation based temporal
stereo algorithm. The original stretch correlation algorithm [11] used area based
correlation to guide the matching of the left and right edge features. The algorithm
exploited epipolar geometry, to reduce the correspondence problem to a 1-D search,
together with a disparity gradient limit [16]. The temporal stereo algorithm improved on
the conventional stretch correlation algorithm by making the epipolar search bands
adaptive; calculating search band sizes and locations based on disparity information
obtained from the previous image pair. Temporally seeding using disparity values,
meant the algorithm could work with much smaller epipolar search bands. As the
probability of a mismatch occurring is proportional to the area searched [18], the
temporal algorithm worked very well once the stereo result had ‘grown’ to fit the objects
in the scene correctly. Outliers caused by the stereo matcher incorrectly pairing left and
right image features were reduced, and an additional benefit of reducing computational
load was achieved, typically accelerating the algorithm four fold.

However, [3] also demonstrated that, on start-up, temporal stereo, like simulated
annealing algorithms, could get stuck in local minima in the correlation search space,
leading to outliers in the 3-D data. The proposed solution was to use a stochastic search
element, which applied exhaustive searches to a small percentage of the image blocks
being correlated. It was hoped that the stochastic search would allow the algorithm to
escape local minima and converge on the correct solution. However, the method proved
to be rather crude and unreliable, allowing the re-introduction of ambiguity leading to
extra outliers and missing some previous correctly matched data.

3 Coarse-to-Fine Bootstrap Algorithm

The notion of using image data at various scales to overcome ambiguity and increase the
reliability of stereo, in particular for correlation stereo algorithms, is not new. [12], [15]
and [6], all illustrate stereo algorithms which established gross correspondences first,
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moving onto finer scales to refine the result. [14] and [21] both use a translating
camera(s) to provide a series of narrow to wide stereo baseline images, from which a
CTF estimation of disparity for the scene was made. According to [15]; a CTF approach
allows exhaustive searching with the ability to find an optimal matching point. This
seemed like the ideal solution for providing the disparity information required during the
start-up period for a temporal stereo vision system.

In order to achieve the initial exhaustive search that is required to give a temporal
stereo algorithm a good seed point from which to start, the early frames in a stereo
sequence can be subjected to an additional CTF image pre-processing stage. Processing
the initial few frames at a much coarser scale (for example 30% to 50% of their original
size) allows a correlation stereo algorithm to perform much larger epipolar band
searches, but without increasing the computational load. Additionally, the temporal
stereo algorithm suffers no extra loading because each stereo image pair is only
processed once, at a single CTF scale. The CTF scale can then be increased with each
successive frame until the 100% image size is reached, and the temporal algorithm can
proceed as normal. The benefit of this approach is that a valid 3D result is available
from the first frame, and, our analysis seems to support the fact that the result is more
robust to outliers than the original temporal result processed at 100% image size.
Certainly, this technique is far more robust than the stochastic search method used
previously to give increased ‘search range’ without an excessive computational load.

Factors such as the disparity gradient can still be applied at all image scales:
According to [1]; a change in the viewing distance scales both dot separation and
disparity and, under experimentation, the disparity gradient seemed to remain constant
over a wide variety of scales. This view is also supported by [16] which also says that
the region of disparity gradient support should be set to be large enough to provide good
disambiguation while not being so large that processing time is spent needlessly.

One of the other advantages of the CTF approach being used at the beginning of the
sequence is that a reduction in scale removes some of the low level ‘fine’ structural
detail leaving just the main scene structure. In doing this, we hope to remove some of
the low level ambiguity which can often be present in a scene and concentrate on the top
level scene structure, thus increasing the probability of matching correlation blocks
correctly.

The difference between our application of CTF and the way it is applied in [12] for
example, relates to the final objectives of the stereo algorithm being used. [12] outlines a
scheme for using an adaptive correlation windowing system in which the correlation
window's significant dimension is dependent on the local grey level variance. This is
really only applicable to stereo algorithms trying to obtain dense estimates of disparity
from the correlation of grey level data, whereas our temporal stereo algorithm is feature
based, only returning disparity estimates for edge features. In this work, the CTF
bootstrap is just used as a method of moving to the finest image scale (which will
contain the richest edge information and produce the most accurate stereo 3-D result) as
quickly and robustly as possible.

4 Complex Scene Evaluation

One of the long-standing problems in computer vision is the determination of
algorithmic robustness. We would suggest that, not only is there still a large amount of
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scepticism about the accuracy and reliability of stereo vision algorithms (leading to a
lack up up-take by industry), but the lack of a consistent test-bed for algorithmic
evaluation will mean that this situation will persist.

The development of our automatic evaluation tool for complex scenes was as the
result of a desire to accurately quantify the performance of stereo algorithms for
complex scenes. In [3], an automatic evaluation procedure was outlined to quantify the
performance of stereo algorithms using images of planar data. Mismatches made by a
stereo algorithm resulted in 3-D data points lying ‘off’ the plane in 3-D space,  and
hence an accurate outlier count could be given. However, unless a scene is sufficiently
simple to be modelled using flat planes, then the only way to provide a rigorous
evaluation of an algorithm’s performance is to use images which have accompanying
accurate ground truth data.

We have been using the POV-Ray [17] ray tracing package to produce fairly
realistic scenes and hence stereo image sequences. Generating artificial images in this
way allows precise control over the objects, colour, texture, motion, noise and lighting
in a image. Having the POV-Ray image source code, also allowed us to write scene
description files describing the precise geometry of each scene in our artificial image
sequences. These scene description files could be interpreted by our complex scene
stereo evaluation tool and used as ground truth data for assessing the performance of the
temporal stereo algorithm.

The evaluation tool modelled the expected errors for the stereo algorithm as stated
in [8]:
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Equation 1, Standard Deviation, �Z, of the Error in Z at a Distance of Z

Where �Z is the standard deviation of the Z error at a distance Z away from the camera, I
is the interocular separation distance, f is the focal length of the camera, and �d is the
standard deviation of the expected disparity error. The disparity error in Equation 1 is
calculated using Equation 2, In Equation 2, �d, is affected by the edge feature location
accuracy �ef, the epipolar alignment accuracy, �ep, and the angle of the edge feature, �,
away from the horizontal.
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Equation 2, Standard Deviation, �d, of the Disparity Error

Each point in a stereo result was evaluated by calculating its theoretical �Z. If the
point in 3-D space was consistent with the geometric scene description to within 3 � �Z,
then it was accepted as a good stereo match (i.e. not an outlier).
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5 Experiments

5.1 Artificial Scenes with Automatic Stereo Evaluation

The results from two artificial stereo image sequences are presented here; the first is a
scene containing some translating cubes, and the second represents the view as seen by
an autonomous vehicle moving through a room containing objects. Both image
sequences contained homogenous white gaussian noise and shadows, however they did
not contain lens distortion or focal blurring. Each of the stereo sequences was processed
by the temporal stereo algorithm, once with and once without the benefit of CTF
bootstrapping. The 3-D results were compared with the known ground truth data for the
scenes using the new stereo evaluation tool and a number of statistics on the temporal
algorithm’s performance were obtained.

The cubes sequence, Figure 1, was analysed using a conventional temporal stereo
algorithm, Figure 2, and using the same temporal stereo algorithm but including CTF
bootstrapping, Figure 3. (Initially, the temporal algorithm with CTF started with an
image resolution of 30%, incrementing by 20% with each successive frame.)

Both Figure 2 and Figure 3 show the same stage in the cube sequence; frame 5, at
which point the CTF scale had reached 100%. At this stage both the temporal and the
CTF bootstrapped algorithms would have seen exactly the same input. In Figure 3
however, all of the surfaces of the cubes are covered by the CTF stereo data, whilst the
standard temporal algorithm, Figure 2, still had not managed to grow its result to cover
the extreme far and near points in the scene.

Figure 1, POVRay Cubes Figure 2, Conventional
Temporal Stereo

Figure 3, Temporal with
Coarse-to-Fine Bootstrap
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Figure 4, POVRay Cubes: Number of Stereo Data
Returned
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For the temporal only algorithm, there were very few initial correct matches, with
the rest of the correct data ‘growing’ out from the initial correct matches as the sequence
progressed. However, with CTF bootstrapping, the stereo algorithm returned correct (if
sparse) disparity data for all of the visible cube edges from the first frame onwards.
Figure 4, shows the amount of stereo data returned by both algorithms over the sequence
(the amount of edge data available in each frame in the sequence remained
approximately constant). As the CTF result progressed, the amount of stereo data
returned steadily grows because as the image size of the increases, so does the amount of
edge data present. In the temporal only case, there is a similar steady growth in the
amount of data returned, but this is due to mismatches being resolved and the ‘growth’
of the result over all areas of the scene. Figure 5, shows how the robustness of the CTF
result remained very good throughout the sequence, with only a few (less than 1%)
outliers, whereas the temporal only case has to resolve a large number of initially
incorrect matches before finally reaching an outlier free result.

Visual inspection of the 3-D results revealed that, where CTF scaling had been
used, there was a drop in the accuracy of the stereo result when compared with the best
temporal only result (the same frame in the sequence but with image scale = 100%).
This is caused by CTF scaling of the input stereo image pair, where the feature location

accuracy is being lost by a factor of 
scale

100
, where 0% < scale � 100%. Using a 50%

scaling factor, reduces the number of horizontal and vertical pixels in the image by 50%.
However, the image is still defined over the same physical ‘camera array’, therefore the

effective pixel size must have increased by a factor of 
50

100
. Because the accuracy of the

edge detection process does not change, for example �edge = 0.1 pixels, then the CTF
feature location accuracy must now be; �edge � new effective pixel size, instead of the
original �edge � true physical pixel size.

This theory is supported by plotting accuracy histograms for the error data supplied
from the automatic evaluation tool. From Equation 1, the normalised Z error for a
stereo point can calculated using;

�Z

Z

Z

Z2 2�
�

Equation 3, Normalised Z Error

Where �Z is the measured Z error returned by the automatic evaluation tool. Normalised
Z errors are independent of depth, Z, and remain constant for a particular stereo camera
configuration (i.e. throughout a sequence). Figure 6, shows a typical normalised Z error
histogram, from the cubes sequence. Measuring the � of the histogram gives us a
measure of how accurate the stereo result is. Using this method, we have been able to

prove that CTF accuracy does appear to degrade by a factor of 
scale

100
. The normalised Z

errors can then be re-projected to any depth, Z, and the expected distribution of physical
Z errors can be plotted. Figure 7 shows the distribution of Z errors for the stereo
algorithm at a distance of 3I, for two CTF scales, 30% and 100%, based on the re-
projected normalized Z errors measured from the cubes sequence. In this case the � of
the 30% scale image is 3 times that of the 100% image, which compares favourably with

a theoretical value of 
100

30 � 3.33.
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A very similar conclusion can be reached when looking at the results for the
artificial room sequence, Figure 8.

This particular sequence involved moving the ‘viewer’ through an artificial room
containing several obstacles at a range of depths. Once again, the CTF algorithm was
able to ‘size-up’ the scene in the first frame of the sequence with the stereo evaluation
tool reporting that very nearly all the data was correctly matched with less than 1%
outliers. For the room sequence, the 100% image size for the CTF algorithm was
reached at frame 4, and the 3-D results for that frame can been seen in Figure 9 and
Figure 10. There are still a large number of outliers present in the conventional temporal
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Figure 8, POVRay Room Figure 9, Conventional
Temporal Stereo

Figure 10, Temporal with
Coarse-to-Fine Bootstrap
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Data Returned
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result, Figure 9. Indeed, for this particular sequence, the temporal result never manages
to ‘catch-up’ to the CTF bootstrapped result entirely, see Figure 11, although most of
the outliers have disappeared by frame 7, see Figure 12.

5.1 Real Scenes

The CTF bootstrap algorithm’s performance on real image sequences also proved to be
very good. Two sequences were tested, Figure 13 shows an image from a sequence of
real translating cubes, and Figure 16 shows an image from a sequence of a train moving
along a track.

In the case of the cubes, the coarse processing of the first frame was able to cover
enough of the disparity search range to return data over almost all of the cubes’ surfaces.
The CTF bootstrapped stereo algorithm was then able to track all of the cubes
throughout the sequence without producing any noticeable gross outliers. For the
conventional temporal algorithm, just as with the synthetic cubes sequence, the
algorithm had to grow the correct result over several frames (approximately 6), before it
eventually caught up with the CTF bootstrapped algorithm.

For the train sequence, there was an apparent complete lack of outliers even at the
most coarse resolution (50%). We have attributed this to the fact that most of the outliers
in the conventional algorithm came from matching the fine detail on the side and top of
the train. At the coarse scale, these fine details were lost and the algorithm was able to
match more robustly the major structural features on the train and the track. This gave
the CTF temporal algorithm an excellent seed point from which to start, and was able to
process the whole sequence with very few outliers. The temporal only algorithm on the

Figure 13, Real Cubes Figure 14, Conventional
Temporal Stereo: Frame 1

Figure 15, Temporal with
Coarse-to-Fine Bootstrap:
Frame 1

Figure 16, Real Train Figure 17, Conventional
Temporal Stereo: Frame 1

Figure 18, Temporal with
Coarse-to-Fine Bootstrap:
Frame 1
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other hand initially contained several large groups of outliers, which were all eventually
all resolved over the first 5 frames.

One issue that does arise when using CTF with temporal stereo, is how to choose
the best starting scale and rate of change for the CTF scale parameter. From our
experience of using the CTF bootstrapping, a good starting scale for the CTF was
around 30% to 50% of the original image size. However, the selection of an appropriate
starting scale will depend upon the composition of the scene being viewed, and the size
of the epipolar search bands used in the temporal stereo algorithm. As far as the rate of
increase for the CTF scale goes, this also appeared to be a fairly arbitrary figure. Indeed
for many of our test scenes, experiments have shown that often just a single frame
processed at a coarse scale was sufficient to seed the temporal matching at the finest
image resolution. However, we suspect there may be a trade off in the rate of CTF scale
increase, and the amount of searching (computational load) that the temporal algorithm
has to do in processing subsequent frames. Increasing the CTF scale too quickly, may
result in gross disparities from a large area of the previous stereo result being used to
seed searches on much finer scaled images, leading to large epipolar search bands being
used unnecessarily. Gradually introducing the finer scaled images, should minimise this
effect, and, for scenes containing large depths of field, give the temporal algorithm a
chance to refine and resolve stereo matches at the coarser scales before moving onto the
finer image scales.

6 Conclusions

Any search-band-based stereo correspondence algorithm will be sensitive to the
parameter range selected, which cannot be known a priori. Temporal matching schemes,
making use of simple consistency, alleviate this problem so that after some period of
time the correct solution will be achieved regardless of the initial assumptions. In this
work we have demonstrated that a coarse-to-fine bootstrap, preceding temporal stereo,
will allow the matching process to home in on the best set of matches quickly and as
robustly as possible. Also, bootstrapping the temporal matching process in this way
should not have an effect on the execution speed of a stereo vision algorithm because the
re-scaling of the input images could be done at the same time as the pre-processing stage
of the stereo algorithm itself.

A statistical model of the theoretical accuracy of the stereo algorithm has been used,
together with an autonomous evaluation tool for stereo vision to prove the robustness of
the coarse-to-fine stereo bootstrapping process. The evaluation test-bed has also
demonstrated the viability of benchmarking the performance of complex stereo
algorithms for difficult scenes, providing they can be modelled successfully.

If you would like to evaluate our temporal stereo algorithm including the coarse-to-
fine bootstrapping, it is available, together with the stereo evaluation tool, from:

http://www.shef.ac.uk/~eee/esg/research/tina.html
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