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Abstract

An approach to gesture recognition is presented in which gestures are mod-
elled probabilistically as sequences of visual events. These events are matched
to visual input using probabilistic models estimated from motion feature tra-
jectories. The features used are motion image moments. The method was
applied to a set of gestures defined within the context of an application in vi-
sually mediated interaction in which they would be used to control an active
teleconferencing camera. The approach is computationally efficient, allow-
ing real-time performance to be obtained.

1 Introduction

There has been a lot of interest recently within the computer vision community in the
recognition of human actions and gestures (see for example the review by Pavlovicet al.
[4]). This work presents an approach to recognition in which the actions and gestures
are modelled probabilistically as a series of visual events. Visual input is analysed by
extracting motion feature trajectories. Events are characterised by probabilistic models
of feature trajectories estimated from examples. The approach is applied to an applica-
tion in visually mediated interaction in which pointing and waving gestures are used to
communicate commands to an active teleconferencing camera. These gestures can be
characterised by coarse spatio-temporal features which are inexpensive to compute. This
property, along with their view-specific nature, makes real-time recognition possible.

The feature set used is based on moments estimated from motion images. Image mo-
ments have been used previously for gesture recognition. For example, moments extracted
from hands tracked using colour were used for American Sign Language recognition [6]
and moments based on image axis projections were used in a hand-driven games interface
[2]. The method used for matching trajectories is similar in some respects to that used by
Black and Jepson to drive a “Condensation” recognition algorithm [1]. The probabilistic
method used for treating gestures as sequences of events is similar to a state machine used
to parse gestures [7].
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2 Gestures for Visually Mediated Interaction

In order to illustrate the approach, let us restrict our attention to a set of four gestures.
These gestures have been defined within the context of an application in visually mediated
interaction in which they are to be used to control an active camera for teleconferencing.
The four gestures are (i) pointing left (ii) pointing right, (iii) waving high up and (iv)
waving low down. The associated camera actions for the teleconferencing applications
are (i) pan right to next subject, (ii) pan left to next subject, (iii) zoom out to a wide-angle
view, and (iv) zoom in to frame the gesturer.

The four gestures are similar in many respects. They are all deictic in the sense that
they are each used to communicate a direction of desired motion for the camera field-of-
view. The gestures are all motions of the arm and hand in which local spatial information,
such as the shape of the hand, is unimportant. The gestures also share a similar temporal
structure. They are all ‘tri-phasic’ i.e. consisting of three phases: (i) an initial transitional
phase in which the arm is raised, (ii) a middle phase, and (iii) a final transitional phase in
which the arm is lowered to a resting position. The similarity of the gestures has important
implications for visual interpretation. While it implies that a unified recognition method
should be applicable, it will inevitably mean that ambiguities arise. For example, it is
simple to perform a single gesture which human observers will inconsistently classify as
both pointing and waving.

An image sequence database was collected containing twelve examples of each ges-
ture. There were three different subjects each of whom performed each gesture four times.
Each sequence had 60 frames captured at 12 Hz. An example of each gesture can be seen
in Figure 1.

3 Motion Image Moment Features

It is assumed that the subject is sitting relatively motionless and that the major changes
during an image sequence are due to the motion of the arm used to perform the gestures.
The gestures to be modelled and recognised are by their nature always oriented towards
the camera. Therefore, a 2D view-specific representation can be used. Since detailed
shape is unimportant, a coarse spatial representation is suitable. In particular, moment
features estimated from image motion provide such a representation.

Various levels of sophistication are possible when detecting human motion (e.g. [3]).
Here, for simplicity and computational efficiency, two-frame temporal differencing was
used to detect significant changes in the intensity image. At timet, the binary image
Bt was obtained by thresholdingjIt � It�1j at a valueT tuned to the imaging noise (T
was set to10 in our implementation). A set of moment features was then extracted from
each imageBt. The motion areaA (zeroth-order moment), the centroid co-ordinates�x,
�y (first-order moments) and the elongationE (derived from the second-order moments)
were estimated as follows:

At =
P

x;yBt[x; y]; �xt =
1
At

P
x;y xBt[x; y];

�yt =
1
At

P
x;y yBt[x; y]; Et =

�max

�min

(1)
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Figure 1:Selected frames from four of the sequences used to derive gesture models.
The four gestures are (from top to bottom) (i) pointing left, (ii) pointing right, (iii)
waving high and (iv) waving low.

where, �2 = 1
2 (a+ c) + 1

2 (a� c) cos 2� + 1
2b sin 2�;

a =
P

x;y(x� �x)2Bt[x; y]; sin 2� = � bp
b2+(a�c)2

;

b = 2
P

x;y(x � �x)(y � �y)Bt[x; y];

c =
P

x;y(y � �y)2Bt[x; y]; cos 2� = � a�cp
b2+(a�c)2

The minimum and maximum values of� are found by changing the signs of thesin 2�
andcos 2�. Elongation has a lower bound ofE = 1 in the case of a motion image with
an isotropic distribution of motion. In order to obtain a feature set with invariance to
translational shifts in the image-plane, the displacement of the centroid was estimated as
ut = �xt � �xt�1, vt = �yt � �yt�1. At time t, the estimated feature set was(At; ut; vt; Et).

It is worth pointing out that these features will exhibit variations due to extrinsic fac-
tors such as illumination and viewing geometry. In particular, area and centroid displace-
ment will scale differently. The feature set will also vary between different gesturers and
between different instances of the same gesture. In particular, the visual texture of cloth-
ing will cause variation with more highly textured clothing increasing the motion area.

Figure 2 shows five temporal difference frames from the second sequence in Figure 1.
The path described by the estimated centroid during frames with significant motion is also
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shown. It is clear that during periods of low motion area, estimates of first and second-
order moments will become unreliable.

Figure 2:Selected temporal difference frames from the second sequence in Figure 1.
The area of detected motion is shown as mid-grey here, whilst the path described by
the estimated centroid is overlaid in black.

4 Feature Trajectories

A set of feature trajectories can be computed from an observed image sequence by es-
timating the moment features for each frame. At timet, a temporal trajectoryzt =
(: : : ; zt�2; zt�1; zt) is available for each feature, wherezt denotesAt, ut, vt orEt. Dif-
ferent gestures give rise to different feature trajectories and the trajectories for a particular
gesture vary between different instances of that gesture.

A probabilistic event model can be obtained from appropriately aligned example se-
quences of that event. A gesture can be modelled as a series of visual events. For exam-
ple, a pointing gesture can be modelled as a sequence of three events corresponding to the
phases discussed in Section 2.

An event is modelled as follows. Given temporally segmented examples, the mean
duration,�d, of the event is estimated. Each example’s feature trajectories are then tem-
porally scaled to this mean duration using linear interpolation. The aligned examples are
then averaged to yield a mean trajectory(m1;m2; : : : ;mw), wherew is �d rounded to
the nearest integer. The variances(�21 ; �

2
2 ; : : : ; �

2
w) are also estimated. An event model,

�, consists of a model trajectorym = (m1; �
2
1 ;m2; �

2
2 ; : : : ;mw; �

2
w) for each feature and

a duration modeld = (�d; dmin; dmax). The variance parameters play an important role
since the variation between examples differs over the length of the event. The probability
density for the event duration is modelled as uniform over a finite interval[dmin; dmax].
This was found to be a better model for duration than a Gaussian densityd � N (�d; �

2
d).

Figures 3, 4 and 5 show model trajectories estimated from the gesture database de-
scribed in Section 2. The pointing gestures have been modelled using three events (giving
rise to three model trajectories) whilst the waving gestures have been modelled as a single
event. This was convenient since the second phase of a pointing gesture contains little sig-
nificant motion leading to a natural segmentation of the gesture into three visual events.
However, segmentation of a waving gesture into three phases is more ambiguous.
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Figure 3:Model event trajectories for pointing left. From top to bottom: area, dis-
placement and elongation. From left to right: start phase, middle phase and end
phase. Error bars denote��.
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Figure 4: Model event trajectories for pointing right. From top to bottom: area,
displacement and elongation. From left to right: start phase, middle phase and end
phase. Error bars denote��.
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Figure 5: Model trajectories for high (left) and low (right) waves. Top to bottom:
area, displacement and elongation. Error bars denote��.

5 Event Recognition

A w-frame model trajectorym = (m1; �
2
1 : : : ;mw�1; �

2
w�1;mw; �

2
w) can be matched

with aw-frame trajectoryzt = (zt�w+1; : : : ; zt�1; zt) observed at timet to estimate the
likelihoodp(ztjm) of the observed trajectory given the model:

p(ztjm) =
1p

2�j�j 1w exp

0
@� 1

2w

wX
j=1

(zt�(w�j) �mj)
2

�2j

1
A (2)

This likelihood function is a Gaussian density function normalised for the length of the
temporal window,w. The covariance matrix of this Gaussian is diagonal with elements
(�21 ; : : : ; �

2
w�1; �

2
w). The use of diagonal Gaussian matching is motivated by the fact that

the variance of features is not consistent within trajectories. This can be seen in Figures 3
and 4. For example, when the motion area is low, the centroid estimates become less stable
and have higher variance. It would only be useful to estimate full covariance matrices
given a perhaps impractically large amount of training data.
In order to perform matches with time-scaling, a parameter� is introduced:

p(ztjm; �) =
1p

2�j�j 1w exp

0
@� 1

2w

wX
j=1

(zt��(w�j) �mj)
2

�2j

1
A (3)
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Several matches are performed by sampling� uniformly in the interval[dmin

�d
; dmax

�d
].

Givenn values of�, the likelihood of the observed trajectory given a model is estimated
as:

p(ztjm;d) =
1

n

nX
i=1

p(ztjm; �i) (4)

A more robust estimator is:

p(ztjm;d) = max
i

p(ztjm; �i) (5)

An event model,�, consists of a trajectory model for each of theN = 4 features as well
as a duration model, i.e.� = (m1; : : : ;mN ;d). The likelihood of an event� is estimated
as:

p(ztj�) = p(ztjm1; : : : ;mN ;d) = �N
i=1p(ztjmi;d) (6)

6 Gesture Recognition

Gestures are modelled as sequences of multiple events. Each event is matched inde-
pendently with its own event model and linear time-scaling. Recognition of a gesture
constitutes matching the appropriate events sequentially. The gesture as a whole is thus
time-warped in a piecewise linear fashion.

Gesture recognition is performed using a probabilistic finite state machine. State tran-
sitions depend on both the observed model likelihood and the estimated state duration
p.d.f. This is similar to a hidden Markov model although we do not use a transition
probability matrix as this essentially models state durations with an exponential favour-
ing shorter durations. Instead the state duration p.d.f. is estimated from the training
examples as either a Gaussianp(d) � N (�d; �

2
d) or a uniform density over the interval

[dmin; dmax].

7 Results

Firstly, the 48 sequences in the training database were analysed using a single event model
for each of the four gestures. Table 1 shows the results in the form of a confusion matrix.
There were 5 errors and these were all due to confusion between high and low waves.
All the pointing gestures were correctly identified. While care should be taken when
interpreting results on training data, this result would seem to indicate that the models are
effective at detecting and discriminating between pointing left, pointing right and waving.

Figure 6 shows the gesture likelihoods obtained by matching the gesture models to a
sequence in which a novel subject (not in the training data) points left, waves and points
right in that order.

Figure 7 shows the likelihoods of the pointing events for the same sequence.The event
models for pointing right also respond to the waving gesture although not strongly enough
to result in incorrect recognition. This is intuitively reasonable since these gestures appear
similar.
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Point left Point right Wave high Wave low

Point left 12 0 0 0
Point right 0 12 0 0
Wave high 0 0 8 4
Wave low 0 0 1 11

Table 1: Confusion matrix for the training database. Four high waves were misclassified
as low waves. One low wave was misclassified as a high wave.
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Figure 6:Top: Frames 20, 50, 85, 100, 135 and 160 from a test sequence in which a
novel subject points left, waves and then points right. Bottom: Gesture likelihoods
estimated from the test sequence.

8 Conclusions

Trajectories based on a simple set of motion image features were used to estimate mod-
els for gesture events. A temporally normalised Gaussian matching with time-scaling
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was able to successfully detect and discriminate between pointing left, pointing right and
waving gestures. This was despite significant variations between examples of the same
gesture, both between gesturers and for a particular gesturer. In theory it should be helpful
to estimate the covariance of the motion features as well as their variances. Recognition
would then be performed using a Gaussian matching function (Equation 3) with a full
covariance matrix. However, reliable estimation of the covariance matrix would require a
much larger set of training examples.

Future work will include integration of this approach with methods for active tracking
and localisation of heads and hands [5]. The aim is to use gesture recognition to drive an
active camera for teleconferencing.
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Figure 7:Event likelihoods estimated from the test sequence in Figure 6. The vertical
axis is a logarithmic scale. Top: Likelihoods for the pointing left events. Bottom:
Likelihoods for the pointing right events.


