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Abstract

We consider reconstruction algorithms using points tracked over a sequence
of (at least three) images, to estimate the positions of the cameras (motion
parameters), the 3D coordinates (structureparameters), and the calibration
matrix of the cameras (calibrationparameters).

Many algorithms have been reported in literature, and there is a need to
know how well they may perform. We show how the choice of assumptions
on the camera intrinsic parameters (either fixed, or with a probabilistic prior)
influences the precision of the estimator.

We associate a Maximum Likelihood estimator to each type of assump-
tions, and derive analytically their covariance matrices, independently of any
specific implementation. We verify that the obtained covariance matrices are
realistic, and compare the relative performance of each type of estimator.

1 Introduction

The problem of 3D reconstruction from images has drawn considerable attention. We
focus on the problem of reconstruction frommatched points(corners). The parameters
of interest are thestructure parametersi.e. the 3D coordinates of the points, themotion
parametersthat describe the positions of the cameras; and thecalibration parameters
that describe the intrinsic characteristics of the used sensors. The case of known intrin-
sic parameters has been thoroughly studied in photogrammetry [12]. Work on uncali-
brated reconstruction progressed dramatically in recent years with the works of Hartley
[4], Faugeras [2], Maybank [8], Pollefeys et al [7], who showed how to obtain projective,
affine, and, finally, euclidean reconstructions from uncalibrated views. We are interested
in euclidean reconstruction. Many algorithms have been proposed, differing e.g. on the
assumptions concerning the calibration parameters and/or motion. In some studies [1, 11]
some intrinsic parameters are fixed to trivial values. We want to compare, in terms of
precision, the effect of these assumptions and the precision achieved in the calibrated
case. A study of critical (pathological) cases for self-calibration can be found in [10],
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and the achievable precision in the calibrated case is addressed in [5]. One contribution
of this paper is to compare the precisions of calibrated and un-calibrated reconstruction.
Although the former always performs better, experimentation shows that when more than
ten images are available un-calibrated reconstruction performs honorably.

Errors in the localization of image features introduce errors in the reconstruction.
Some algorithms are numerically unstable, intrinsically, or in conjunction to particular
setups of points and/or of cameras. However, an in-depth study of the precision of these
algorithms has not been presented. The issue of the accuracy of uncalibrated reconstruc-
tion has been raised and studied repeatedly, but always associated to a particular algo-
rithm. Our aim is to give a more general treatment to the question, while remaining as
independent as possible of any particular implementation.

1.1 Scope of the paper:

Most algorithms combine an “algebraic” part, and an optimization part that solves for
a ML [4] (or related [9]) estimate. ML estimators are often reported [9] to converge to
the solution only if started close from it. It is the purpose of the “algebraic” algorithm to
provide the starting position. In this paper, we study the precision of the ML estimator,not
that of the algebraic algorithm. The true parameters are considered as random variables
with a distribution that is defined from the observations. The ML estimator is defined by
the observation model, independently from any specific algorithm; we derive analytically
its covariance matrix in various cases of interest :

1.1.1 Full reconstruction from the observations only:

This is the most general case, but the estimation is often numerically ill-posed. For exam-
ple, in [1] some intrinsic parameters are highly correlated with some of the motion param-
eters, and the focal length is correlated to the depth (cinema uses the fact that zooming is
almost indistinguishable from forward motion).

1.1.2 Determination of a reduced set of parameters :

If some calibration parameters are fixed, they may be removed from the estimated vector.
This simplifies the study and implementation of the estimator, and -presumably- amelio-
rate the numerical stability. Typical assumptions are that pixels are rectangular or square,
or that the principal point coincides with the image center [11, 7]. We verify in Section 4.1
the effect on precision of fixing the intrinsic parameters, either to values obtained from
a pre-calibration step or to trivial values (corresponding to square pixels and centered
principal point).

1.1.3 Full reconstruction with probabilistic prior knowledge

The likelihood function may be modified to take into account a-priori knowledge ex-
pressed probabilistically, e.g. assuming that either structure or calibration follow a known
distribution. A prior on structure serves most often to retrieve precisely the intrinsic pa-
rameters, and is then calledcalibration from a known object.

A prior on the calibration parameters, may come either from a previous calibration
step, or from assuming that the camera parameters follow a “trivial” distribution, e.g. the
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expected value of the principal point is the center of the image, and that its standard devi-
ation is approximately 10 percent of the image size1. This is the probabilistic counterpart
of fixing the principal point to image center, as in Section 1.1.2. In terms of the theoretical
precision, priors are preferable to fixed parameters.

We will write analytically the covariance matrices corresponding to the studied cases
in eqs. (11) to (13). The diagonal terms correspond to the variances of the individual
estimated parameters. The validity of our analytical expressions is verified by comparing
the theoretical and the observed behavior of a reconstruction algorithm, in Section 4.1.
One important contribution of this paper lies in showing how big the variances of the
considered estimators are in practice.

2 Observation Model

2.1 Notations

We consider that a set ofP points has been tracked over a sequence ofN images. The
following notation is adopted :

� p 2 f1; 2; � � � ; Pg andn 2 f1; 2; � � � ; Ng are the indices used for numbering points
and images, respectively.

� xp 2 R3 is the vector of the coordinates, in the world frame, of thepthpoint. Its
components arexpi, for i 2 f1; 2; 3g. The symbolX shall denote all thexpi, for
i 2 1::3, andp 2 1::P .

The projection of these 3D points in the image depends on the relative orientation and
position of the camera . Let

� An = [ an1 an2 an3 ]
T be the rotation matrix relating world coordinates to coordi-

nates in thenth image frame. It can be uniquely defined by 3 parameterswn. W
will represent all thewn, for n 2 1::N .

� Tn be the coordinates of the world frame origin, expressed in thenth camera frame.
T will representT1:::Tn.

Assuming that the camera has unit focal length, square pixels and a centered principal
point, thepth pointxp, produces the (noiseless) observations~unp = (~unp1; ~unp2):

~unpi =
anixp + ti
an3xp + t3

i 2 f1; 2g (1)

Taking into account the intrinsic parameters and noise yields :

unp = B~unpC+ "np (2)

with

1Lenz and Tsai [6] cite values of this order of magnitude.
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� B = [b1;b2]
T the 2-by-2 matrix that models the skew, pixel size and camera focal

length.

� C = [c1; c2]
T the pixel coordinates of the principal point.

� "np = ["np1; "np2]
T the observation noise, which is assumed to have Gaussian,

independent and identically distributed terms, with variance�2.

Let U denote all the observationsunpi, for i 2 f1; 2g; p 2 f1 � � �Pg andn 2 f1 � � �Ng;
the intrinsic parameters,B andC, will be notedK. An asterisk denotes the true values of
the parameters,X �, W�, T �andK�. The problem is defined as estimating the structure,
camera orientation and position, and intrinsic parameters, from the observationsU . We
write as a single vector, all the parameters :� = (X ;W ; T ;K). For a given�, the

predictionof the(n; p; i)th observation is defined as :

vnpi(�) = bi~unp(�) + ci where ~unpi(�) =
anixp + tni
an3xp + tn3

(3)

2.2 Likelihood function :

An estimator of the parameters is a functionE : U ! � , that associates a parameter
vector� to a data setU . The Maximum Likelihood estimator is defined by a global
minimum of the (inverted) log-likelihood, taken as a function of� :

Q(U ;�) =
X
npi

1

2�2
(unpi � vnpi(�))

2 + Constant (4)

This function doesnot have a unique minimum : it is well-known that the recon-
struction is defined only up to a similarity. A way of resolving the ambiguity is to con-
strain the structure parameters to be centered (

P
p xp = 03) and have unit mean norm

(
P

p jjxpjj
2 = 3P ), the camera matrixB to be lower triangular, and the first camera

frame to coincide with the world frame (A1 = I3). After removing the first rotation
matrix, and the upper right coefficient inB from the parameter vector�, the restricted
parameter set is defined as the zeros of the function :

S(�) =
� P

p jjxpjj
2 � 3P;

P
p xp1;

P
p xp2;

P
p xp3

�T
(5)

There are still some critical setups yielding a continuum of ML estimates, even within
the setS�1(f04g). Uniqueness conditions have been studied in [10]. In this article, we
consider that the minima ofQ that verifyS(�) = 0 are isolated. Note that constraints are
not needed when using a prior on the structure.

Probabilistic prior on a subset of the parameters : Assuming prior knowledge on the
parameters leads to adding a term to the log-likelihood functionQ(U ;�): a prior on the
structure,X � � N(X0;�X) adds the following term :

(X �X0)
T��1X (X �X0)

A prior on the calibration is treated likewise.
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3 Covariance of estimators

We show how the covariance matrix of Maximum-Likelihood estimator derives from its
definition. This derivation, which can be found, e.g. in [3], is then applied to the problem
of estimating structure, motion and calibration.

3.1 Definition of the estimators :

The maximum likelihood estimate is defined by :

�̂ = arg�minQ(U ;�) subject toS(�) = 0

At the minimum, the derivative ofQ is a linear combination of the derivatives of con-
straints.

D�Q(U ; �̂) + �D�S(�̂) = 01�size(�) (6)

whereD� is the differentiation operator. Assuming that the observation noise, and�� =
�̂ � �� are not too large, the first order development ofS andQ in (��;U�) is a good
approximation. The following holds:

0 = S(��) ' S(�̂) +D�S(�̂)�� = D�S(�̂)��; (7)

D�Q(U ; �̂) ' D�Q(U
�;��) +D2

��Q(U ; �̂)��+D2
�UQ(U ; �̂)"

Note that the linear development can be done either at(U�;��) or at(U ; �̂). eq.s (6) and
(7) may be written in matrix form :

�
H GT

G 04�4

��
��
�

�
= �

�
F"
04

�
; where

H = D2
��Q(U

�;��)
F = D2

�UQ(U
�;��)

G = D�S(�
�);

(8)

This equation uniquely defines�� -if the matrix is invertible- as a linear transformation
of the noise". The covariance is :

Cov

�
��
�

�
'

�
H GT

G 0

�
�1 �

�2FF T 0
0 0

� �
H GT

G 0

�
�1

; (9)

We now specialize the above formulas to our case. The definition ofQ gives :

D�i
Q =

P
npkD�i

vnpk(vnpk � unpk)=�
2

D2
�i�j

Q = 1
�2

P
npkD�i

vnpkD�j
vnpk+D

2
�i�j

vnpk(vnpk � unpk)

D2
�iunpk

Q = D�i
vnpk=�

2

(10)

At (��;U�), one hasvnpk = unpk, and thus the second order terms inD2
�i�j

Q
are eliminated. In what follows, these terms are systematically eliminated. Noting that
D�Q

T �D�Q = D2
��Q=�

2, and replacing in eqs. (9) yields.
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Cov

�
��
�

�
=

�
H GT

G 0

�
�1 �

H 0
0 0

� �
H GT

G 0

�
�1

(11)

If the estimated quantities have very different orders of magnitude, their estimators
may become numerically unstable, and the theoretical covariances irrelevant. The param-
eterization is chosen to avoid these pitfalls, by taking the expected unit square module of
the parameters to be' 1, since this is the module of thexpi parameters. ForK, based
on our experience, and on remarks by Lenz and Tsai [6], we assumed that the parameters
b21, b22 � 1, C1 andC2 all have approximately an expected absolute value of0:1, which
leads us to the parameterizationK = 10[b21=b11; b22=b11 � 1; C1; C2; log f ], wheref is
the focal length. Neither the rotation parametersW nor the translation parametersT are
normalized in the present work, but their order of magnitude is reasonable.

3.1.1 Covariance when a prior is used :

A prior on the structure , X � ' N(X0;�X), modifies the likelihood function, as dis-
cussed before. The term(X0 � X )��1X is added to the differential ofQ with respect to
X , DXQ, and��1X is added toD2

XXQ, the second differential ofQ with respect toX .
This prior renders the constraint defined in eq. (5) irrelevant : all the parameters can be
uniquely determined without having to restrict the parameter set. Furthermore, the dif-
ferential ofQ in (��;U�) is not (in general) zero anymore. Altogether, this yields the
normal equations :

H+x�� = F"+

�
��1X (X0 �X �)

06N+5

�
; where H+x = H +

�
��1X 0
0 0

�

is the modified matrix of second derivatives. The covariance of the estimate is then :

Cov�� = (H+x)�1H+x(H+x)�1 =
�
H+x

�
�1

(12)

A prior on the calibration parameters is treated likewise, but one keeps the con-
straintsS, and the matrix ofG of derivative :

Cov

�
��
�

�
=

�
H+k GT

G 0

�
�1 �

H+k 0
0 0

� �
H+k GT

G 0

�
�1

(13)

3.1.2 Fixed parameters :

Fixing K = K0 for some valueK0 6= K
�, and assuming thatK� � N(K0;�K), the

covariance matrix of the estimatê�1 = (X ;W ; T ), takes the form:

Cov

�
��1

�

�
=

�
H11 GT

1

G1 04�4

�
�1 �

HT +H1K�KH
T
1K 0

0 0

� �
H11 GT

1

G1 0

�
�1

(14)
Where andH11,G1 are the appropriate sub-blocks ofH andG.
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4 Experimental Results

Measure of error : We study separately the errors on the parametersX ,W , T andK.
ForX andK, which are normalized for havingE(jjxpjj2) = 1, andE(jjKjj2) ' 1, the

error measures are
q
E(jjxp � x�pjj

2) and
p
E(jjK�K�jj2). For T ,

p
E(jjt� t�jj2)

is used. ForW , the measure is the standard deviation of the angle formed between axes
of the true and the estimated camera frames,

p
E(jjwn �w�njj

2). When a prior on the
structure is used, and the first camera may be different from the identity matrix,wn is
taken as the difference between the first camera and thenthcamera.

4.1 Validation of the analytical expressions of covariances:

The covariance matrices (11)-(14) are obtained using the approximations (7) and (10); we
must verify that they are valid in practice. This is done by implementing the considered
estimator, and verifying that the error committed is consistent with the predictions. We
have built100 “general position” setups of 10 points seen in 5 images. The noise is 40dB2.
For each setup, the corresponding theoretical covariance matrices��, are computed. The
observationsU(�)are contaminated by i.i.d. Gaussian noise, at40dB, and a ML estimate
�̂ is determined The error committed on each individual parameter of� is scaled by the
corresponding theoretical standard deviation. These values should follow a lawN(0; 1)
if the theoretical variances were correct. The histogram of the resulting values is shown
in Figure 1 together with a reference Gaussian density curve . For that noise level, the
theoretical and true covariances are very similar, and we conclude that the theoretical
variances are realistic.

4.2 Variance of estimators:

Short-Range : We compare the relative precisions using a real-world sequence of 5 im-
ages of a static scene, with fixed intrinsic parameters and 48 hand-matched points on a
calibration grid. This setup is a close-up of Figure 1 , taken from' :75� 1m. Total rota-
tion is' 30 degrees. Since the 3D point positions are known, one may retrieveW ; T and
K with precision, and later use these values as ground-truth. The precision of this calibra-
tion step, as determined by eq. (12), is shown on the first line in Table 1. We assumed that
the observation noise had variance1e� 4, based on the residualsvnpi(�̂) � unpi which
have variance7e� 5. We further assumed that the standard deviation of the error on the
ground-truth was of1%, corresponding to' 2mm. We label the lines of the table in the
following manner :

� Calib contains results obtained when calibrating.

� ML : Maximum-Likelihood estimator, with covariance defined in eq. (11).

� TP (Trivial Prior) andCP (Calibration Prior) are for estimators with a prior onK.

� TF andCF denote the estimators with fixed intrinsic parameters, to trivial values
(TF), or values obtained by a previous calibration step (CF).

2Noise level, in decibels is defined as dB= �10 log
10
(var(")=var(u)).
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Figure 1: .
Left : Histogram of scaled errors of the ML estimator. In abscissa
is the error, divided by the theoretical standard deviation. The Gaussian
density function is superposed for comparison. The observed variance is
1.02, while parametersX , W , T and K have variances in [0:98; 1:09].
Right : An image from the Long-Range sequence.

The most important features apparent from this table are :

� The ML estimator (second line) gives totally wrong the intrinsic parameters.

� The precision obtained with calibration information (fourth and sixth lines) is much
better than that obtained without (second, third and fifth lines).

� Without pre-calibration, the use of a trivial prior (third line) provides much better
estimates than either the ML or the trivially-fixed-parameter (TF) estimators (sec-
ond and fifth lines).

Long-Range : the grid (shown on right, in Figure 1) is seen along12 images, from
1:5� 2:5m, and the maximum camera-camera distance is' 1:3m. The variances of the
five tested estimators are displayed in Table 1. For theCP andCF (fourth and sixth lines)
estimators, the covariance of the prior is that of short-range calibration. The ML estimator
and the estimator with trivial prior (second and third lines) perform nearly as well as the
estimators that use prior calibration (fourth and sixth lines). The estimator with fixed
trivial parameters, however, appears to behave relatively poorly. The first point appears to
be due to the increased number of images used.

4.3 Influence of the number of images :

Figure 2 plots the base 10 logarithm of the variance in structure and in intrinsic parame-
ters, as a function of the number of images used. Long sequences of uncalibrated images
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Short Range,N = 5; P = 48 Long Range,N = 12; P = 48

x w t K x w t K

Calib 0.0079 0.20 0.0350 0.0872 0.008 0.34 0.556 0.239
ML 0.429 2.66 1.08 3.30 0.0816 0.68 1.44 0.440
TP 0.134 1.00 0.437 0.767 0.0774 0.65 1.35 0.373
CP 0.084 0.61 0.0705 0.0867 0.0646 0.54 0.329 0.0844
TF 0.299 2.54 1.63 1.00 0.148 1.83 7.10 1.00
CF 0.0840 0.61 0.0706 0.0872 0.0646 0.54 0.330 0.0872

Table 1: Each column contains theexpected standard deviationof either the structure
x, orientationw, position t or calibration parametersK . w is expressed in degrees.

allow as good 3D reconstruction as short calibrated sequences, whereas short uncalibrated
sequences give poor results. In all cases, it is better to use a trivial prior than to fix the
intrinsic parameters to trivial values.
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Figure 2: Log (base 10) of the error on the structure parametersX and calibration param-
eters,K. The curves are taggedML , TP, CP, TF and CF as explained in the text. Thirty
setups were generated, each with twelve 3D points, generated as Gaussian white noise,
and then normalized. The camera orientations have Euler angles independently uniformly
distributed in[��=4;��=4;��=8]. The scene-camera distance is 6 to 12 times the size of
the scene. The precision of the camera calibration is that of Table 1, and the observations
noise has variance1e� 4.

5 Conclusions:

We have presented analytical expressions of the covariance matrices of the estimators,
and verified experimentally their validity. We compared the precision of various 3D-
from-matched-points algorithms, and showed how it depends on the physical setup. To
summarize :
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� Pre-calibration, if one may assume that the intrinsic parameters do not vary, greatly
improves the precision of reconstruction. When realistic calibration parameters are
available, they can be fixed : compare the “CP” and “CF” lines in the tables above.

� Long sequences of uncalibrated images allow as good 3D reconstruction as short
calibrated sequences. Therefore it shows the potential quality of euclidean recon-
struction obtained from long uncalibrated sequences.

We are presently working to better analyze the influence of the sequence length, number
of points and noise in image measurements. On the analytical side, the present work could
be extended to variable intrinsic parameters .
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