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Abstract

Regular structures, flat and non-flat, are perceived as regular in a wide range
of viewing angles and under varying illumination. In this papers, we exploit
this simple observation and develop an invariant measure of pattern regu-
larity. The measure is the maximum of the regularity values obtained for
different directions within the pattern. We demonstrate that the regularity
feature introduced is reasonably stable under weak perspective of real non-
flat structures. The feature is consistent with human perception of texture
regularity. It is used for regularity-based image filtering. Examples of invari-
ant detection of periodic structures are shown. Finally, structural defects in
regular textures are detected as locations of low regularity.

1 Introduction

Figure 1 shows a set of patterns which look different but have much in common. They are
different views of the same three-dimensional, periodic structure indicated by a box in a
RADIUS [10] model board image shown in figure 5.

Figure 1: Different views of a non-flat regular structure.

Pattern 1 2 3 4 5 6 7 8 9 10
Value 0.78 0.89 0.88 0.87 0.90 0.85 0.84 0.86 0.83 0.85

Table 1: The regularity values of the patterns shown in figure 1.

The numbers in table 1 are the values of the proposed regularity measure computed
for these patterns. The range is[0; 1], with 1 being perfect periodicity. The regularity
values show surprising stability, compared to the significant changes in the appearance
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of the viewed object. This is consistent with the fact that a regular structure is perceived
by humans as regular under a wide range of affine transformations. To a certain extent,
this is valid even for non-flat structures and changing illumination. Thus, a properly de-
fined measure of pattern regularity can serve as a highly invariant, perceptually motivated
feature. In this paper, we propose such a feature and show examples of its application.

Previous attempts to evaluate pattern regularity were mostly aimed at textures viewed
as planar patterns under two-dimensional shift, rotation and zoom. Our current approach
is related to the early studies by Zucker and Terzopoulos [13] and Chetverikov [1]. The
former applies the chi-test to the co-occurrence matrix and searches for those displace-
ment vectors that coincide with the periodicity vectors. However, no regularity measure
is defined. The latter uses a gray-level difference histogram (GLDH) feature and proposes
a model-based regularity measure for a given direction.

In both [13] and [1], the conventional, raster-based pairwise spatial relation between
the pixels was used. Later, we showed [5] that this relation is unsuitable for precise
analysis of anisotropy and regularity at arbitrary orientations. The extended co-occurrence
was proposed to decouple the magnitude and the angle of the displacement vector.

Rao and Lohse [11] demonstrated that regularity plays an important role in human tex-
ture perception. Tamura et.al. [12] proposed a set of texture features, including regularity,
that correspond to human perception. Their regularity measure is defined via the spatial
variation of four other features, such as coarseness and directionality. However, the ex-
perimental study in [12] indicated poor correlation between the proposed computational
measure and the visually perceived regularity.

D’Astous and Jernigan [6] approach texture regularity using the characteristic fre-
quencies of the power spectrum. A similar, power spectrum based view of regularity
(periodicity) is adopted in the recent work by Liu and Picard [8].

There are different components of regularity, including regularities in the spatial lay-
out and in the intensity distribution of the elements comprising the pattern [3]. A detailed
analysis of regularity should therefore try to characterize these components separately,
which we plan to do in the future. In our current study, two partial measures are com-
bined into an overall measure.

The main contributions of this paper are a new definition of pattern regularity and
an implementation of this feature in a fast and flexible regularity filter. Emphasizing the
invariance of regularity, we make an attempt to extend the scope of this visual feature to
non-flat patterns. In the rest of the paper, we introduce the maximal regularity feature
and show examples of its application to some problems of computer vision, including
classification of texture patterns according to regularity, search for periodic structures of
arbitrary orientation, and detection of structural defects.

2 The maximal regularity measure

2.1 TheMEAN feature of the EGLDH

Our definition of regularity is based on theextended graylevel difference histogramEGLDH
[5, 3]. Consider aM�N pixel size digital imageI(m;n) and a spacing vector~d = (�; d),
with � being the orientation,d the magnitude of the vector. The histogram is computed
by scanning the image by~d and counting the occurrences of the absolute graylevel dif-
ferences between the two points connected by the vector. The origin of~d moves on the
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image raster, while the end of the vector points at a non-integer location. When the origin
is in the pixel(m;n), ~d points at the location(x; y) given by

x = n+ d cos�

y = m� d sin�
(1)

The intensityI(x; y) is obtained by the linear interpolation of the four neighboring pixels,
then truncated to integer. (See [5] or [3] for details.) Note that, contrary to the conven-
tional GLDH,� andd are continuous, independent parameters, which makes the proposed
regularity measure operational.

The EGLDH is defined as

H(k;�; d) =

��f(m;n); (x; y) : m 2 I1; n 2 I2; jI(m;n)� I(x; y)j = kg
��

��f(m;n); (x; y) : m 2 I1; n 2 I2g
�� ; (2)

where the graylevel differencek 2 [0; kmax], kmax = Ng � 1, Ng is the number of
graylevels, andx; y are given by (1).I1 andI2 are the index ranges of the spacing vector
origin in the image.

For a discrete set of spacing vectors~dij = (�i; dj), i 2 [0; Na � 1], j 2 [0; Nd � 1],
we compute the mean graylevel difference

MEAN(i; j) =
1

kmax

kmaxX

k=0

kH(k;�i; dj) (3)

Here�i = �� � i, dj = �d � j. The number of anglesNa = 2�=��. For a maximum
displacementdmax, the number of displacementsNd = dmax=�d + 1. By default,
MEAN(i; 0) = 0. We use�d = 1 with Nd = dmax + 1.

To cope with varying contrast,MEAN(i; j) is normalized by its maximum value
maxijfMEAN(i; j)g so that0 �MEAN(i; j) � 1.

The angular resolutionNa and the maximum spacingdmax are two basic parameters
of the algorithm. It is assumed thatdmax extends to at least two periods of the pattern.
High angular resolution is necessary for the spacing vector to precisely align with the
periodicity vector.

TheMEAN feature (3) is related to the autocorrelation function. When viewed as
a function ofd for a given angle, this feature is calledcontrast curve[1] and denoted by
F (d). Figure 2 shows typical contrast curves for patterns with different degrees of regu-
larity. As discussed in [1], a periodic pattern has a contrast curve with deep and periodic
minima. Our definition of regularity quantifies this property. It also takes into account that
the shape of the period can generally be more complex, with local minima that indicate
the presence of a hierarchical structure. The model-based regularity measure [1] cannot
cope with hierarchical structures.

2.2 Computational definition of regularity

First, for each angle�i we compute a regularity valueREG(i) calleddirectional reg-
ularity. Then themaximal regularityfeatureMAXREG is defined as the maximum
directional regularity over all angles

MAXREG = max
i
fREG(i)g (4)
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Figure 2: Typical contrast curves of a random, a weak regular and a regular pattern.

Figure 3 illustrates the computation ofREG for a periodic contrast curveF (d) having
a local minimum within the period. When searching for periodicity, two cases are consid-
ered. In the normal case (figure 3a) the depths of the global minima decrease monotoni-
cally with d. The special case accounts for possible inhomogeneity of the pattern, when
the monotonicity may not hold.
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Figure 3: Computing the regularity measure. (a) Normal case. (b) Special case.

The algorithm operates as follows.

Step 1 Apply median filter of width 3 to remove noisy extrema inF (d). Denote the
original non-filtered function byF0(d).

Step 2 Find the extrema of the filtered functionF (d), excluding the pointsd = 0 and
d = dmax. (We use the descending component analysis [7].) Denote the number of
minima byNmin.

Step 3 Select the two lowest minima(d1; F1) and(d2; F2), d1 < d2.

Step 4 Set the absolute minimum(dam; Fam) atminfF1; F2g. RectifyFam by searching
F0(d) for an even lower value in the�2 point vicinity ofdam. SetFam to the lowest
value found in this vicinity.
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Step 5 Compute theintensity regularity

REGint = 1� Fam (5)

SinceMEAN(i; j) has been normalized,0 � REGint � 1. By default,REGint =
0 if Nmin = 0.

Step 6 If there is no minimum betweend1 andd2, compute theposition regularityas

REGpos = 1�
jd2 � 2d1j

d2
(6)

Otherwise, consider also

REGpos = 1�
jd2 � 3d1j

d2
(7)

and select the larger of (6) and (7). By default,REGpos = 0 if Nmin < 2.

Step 7 Compute the directional regularity as

REG = (REGint � REGpos)
p; (8)

wherep is a parameter of the algorithm. Currently, we usep = 2.

The median filtering removes false extrema, but it also smoothes and shifts the true
ones. The correction procedure in step 4 restores the original amplitude. A small shift is
accounted for inREGint and is neglected inREGpos. In step 6, two alternatives are con-
sidered:d2 is either the second or the third period. (See figures 3a and 3b, respectively.)

3 Degrees of regularity

In this section we demonstrate thatMAXREG is consistent with the visually perceived
degree of regularity. Figure 4 shows a collection of patterns whoseMAXREG values
are given in table 2. These values were computed with the angular resolution�� = 5Æ.
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Figure 4: A collection of patterns. The rows show random, low regularity, medium reg-
ularity and high regularity patterns, respectively. The regularity value increases in each
row from left to right. (See table 2.)

Category Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Random 0.00 0.07 0.11 0.18 0.22
Low reg. 0.25 0.29 0.32 0.36 0.39
Medium reg. 0.50 0.54 0.58 0.61 0.71
High reg. 0.75 0.82 0.87 0.95 1.00

Table 2: The regularity values of the patterns shown in figure 4.

In figure 4 and table 2, the patterns are grouped in rows as four categories according to
their maximal regularity: random[0; 0:25), low regularity[0:25; 0:50), medium regularity
[0:50; 0:75) and high regularity[0:75; 1:00]. In each row, the value grows from left to
right. When evaluating these results, one should keep in mind thatMAXREG combines
the layout and the intensity regularities. For example, the coffee beans pattern in the
third row (backlighting) is considerably more regular than the coffee beans pattern in the
second row. The layout regularities of the two patterns are similar, while the elements’
intensity in the former pattern is much more regular.
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While MAXREG categorizes patterns according to regularity, its discriminating
power is limited, as visually very different patterns may have the same maximal regularity
value. In particular, this can easily happen to a linear and a tiled pattern whose directional
distributions of regularity are completely different. We plan to investigateREG(i) more
closely in the near future. However, we envisage thatREG(i) will be less invariant and
robust thanMAXREG.

4 Detecting regular structures

The maximal regularity of a flat pattern is invariant under weak perspective, when the size
of objects is small compared with the viewing distance. Weak perspective, an approxi-
mation widely used in vision research, can be interpreted as an orthographic projection
onto the image plane followed by an isotropic scaling [9]. Both transformations preserve
periodicity and parallelism. This is sufficient for the stability of the maximal regular-
ity because its components are invariant under linear transformations of intensity due to
illumination changes.

Assume that a structure extends in the third dimension as well, but its size in this di-
mension is small compared to the other two dimensions. Under weak prospective with
varying viewing angle and distance, the periodic elements of a regular structure cast shad-
ows that are also periodic. In the visible parts of the pattern, periodicity and parallelism
are still preserved, while intensity may change in a non-linear way. Despite this latter
circumstance, the maximal regularity tends to be quite stable, as illustrated in the intro-
duction of this paper.

We used this property ofMAXREG for invariant detection of regular structures in
the RADIUS images [10]. These images contain two or more non-flat regular structures
viewed under weak perspective and varying illumination. TheMAXREG feature was
implemented in a flexibleregularity filter selective to the local regularity computed in
a sliding window. The implementation is based on the previously developed running
filter version of theMEAN feature (3). TheMEAN filter is described in [2, 3]. The
extension of theMEAN filter toMAXREG is straightforward.

The size of the filter window is related to the maximum displacementdmax. By
changingdmax, one can tune the structure detector to short- or long-period regularity, as
demonstrated in figure 5. Whendmax is set so as to exceed two periods of the long-period,
linear roof structure, this structure appears in the filtered image. Note that the first image
contains a poorly visible long-period structure in the bottom-left corner.

The angular resolution of the structure detector was set to�� = 15Æ. Lower resolu-
tion, e.g., the one provided by the conventional co-occurrence, is not sufficient for stable
performance under varying viewing conditions.

Earlier, we applied theMEAN feature of the EGLDH to precise anisotropy and
orientation analysis of patterns [5, 3]. By combining this approach with the maximal
regularity filtering, one can detect structures of given orientation.

5 Detecting structural defects

Instead of detecting locations of high regularity, one can use the regularity filter to indicate
locations of low regularity in regular structures. Such locations are typicallystructural de-
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Figure 5: Detecting regular structures in model board images. In each row, a model board
image and the enhanced results of short- and long-range filtering are displayed. The box
in the first image indicates the structure whose different views are shown in figure 1.

fectswhose detection is of importance in industrial texture inspection and some scientific
applications.

Recently, we proposed a related, novel method for this task [4]. Implemented as the
running filter, the algorithm [4] matchesMEAN(i; j) of the sliding window against the
pre-computedMEAN(i; j) of a reference (ideal) patch. Since the basic texture may have
tolerable variations, the matching is adaptive, with the tolerances in the local orientation
and size being specified by the user. In the resulting filtered image, a blob detector locates
defects as areas of large structural deviation from the reference pattern. (See [4] for
details.)

Alternatively, the same blob detector can be applied to regularity-filtered images, as
shown in figure 6. In this new approach, neither reference patch nor explicit orientation
or size tolerances are to be given: a regularity variation threshold is only specified. To
demonstrate the robustness of this method, the last pattern is a rotated, skewed and tilted
version of the previous one.
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Figure 6: Regularity-based detection of structural defects.

6 Conclusion

We have discussed the role of pattern regularity in machine vision and introduced a new,
highly invariant maximal regularity feature. Pilot examples of its application to a number
of problems have been shown. Currently, the proposed method is limited by its computa-
tional cost which is still high despite the run filtering implementation: regularity filtering
of an average size image takes several minutes on an advanced PC. More research and test-
ing are needed to justify the algorithms and to systematically evaluate their performance,
especially as far as 3D invariance, generality, scalability and robustness are concerned.
We plan to continue the development of the approach and to use it in different applica-
tions, including retrieval of structures for image database management.
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