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Abstract

We present a new evidence gathering based approach, aimed to extract
moving articulated objects from a temporal sequence of images. The new
technique is designed to enable the automated determination of parameters
pertaining to human gait, with a view to possible use as a biometric for recog-
nition purposes. The articulated line feature extraction technique, uses a ge-
netic algorithm (GA) based implementation of the Velocity Hough Transform
(VHT). Using a GA to perform a heuristic search of the parameter space,
rather than an exhaustive one, overcomes the problems of computation time
and memory requirements associated with the original approach.

The new technique employs a parametric gait model consisting of a pair
of articulated lines, jointed at the hip. Trials on real image sequences of
pedestrians demonstrate that the approach is capable of locating and tracking
a walking subject. Moreover, the technique is able to provide reasonable esti-
mates of an individual’s gait cycle period and hip rotation patterns, which are
pertinent to recognition. However, current levels of accuracy are insufficient
for these purposes. Nevertheless, the results demonstrate that the articulated
line feature extraction technique has potential for use as an automated gait-
data retrieval system.

1 Introduction

Human gait analysis is a subject into which there has been much research, with the ma-
jority of the work being conducted in the medical field. The aim of this research has been
the identification of the basic components of human gait to enable the treatment of patho-
logically abnormal subjects, [9, 10]. More recently, an interest in gait as a biometric, “a
measure taken from a living person and used as a method of verification or recognition”,
has developed, [3]. Studies have shown that if all gait movements are considered, gait is
unique, [9, 10]. The uniqueness of human gait is attributed to the fact that the manner in
which we walk is determined by our skeletal structure. Hence, as everyone has a unique
structure and musculature, each individual has a characteristic way of walking, or gait
signature, which can be employed as a means of identification.
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Fundamental to all gait analysis problems however, is the acquisition of information
pertaining to an individual’s gait. In many gait-data collection systems, markers are at-
tached to the subject to facilitate the measurement of the required information, [10]. How-
ever, such an approach is unsuitable for recognition systems as it requires contact with the
subject. To overcome this difficulty, computer vision techniques have been adopted as a
means of gait-data retrieval. The manner in which vision based methods are employed
varies with the techniques developed, a brief overview of which is now presented.

1.1 Existing Techniques

Muraseet al. propose a method for gait recognition which uses a parametric eigenspace
representation of an individual’s gait, [8]. The technique is a non-model based approach
using spatio-temporal correlation, but appears sensitive to significant changes in illumina-
tion or background. Niyogi and Andelson, [12], use spatio-temporal patterns created by
the pixels corresponding to a walking person over a sequence of images. Once again how-
ever, the technique is not directly related to body structure or the dynamics of a walking
person.

A 3D model of a walking person is proposed by Marr and Nishihara, [7]. The model
is a tree structured hierarchy of models corresponding to the identifiable parts of a human
body. Hogg, [5], developed theWALKERmodel which represents a body as a collection
of connected cylinders, and defines the temporal and spatial relationships between the
cylinders for a set of postures which “characterise the articulation of a walking person”.
Rhor, [13], also uses Marr and Nishihara’s model, combined with motion information
gathered from medical studies. Again, instances of a model are individually matched to
the first 10–15 frames of a candidate sequence and Kalman filtering techniques used to
predict the model parameters in subsequent frames. As with Hogg’s technique, Rhor’s
approach is capable of identifying pedestrians but not individuals.

It can be seen that computer vision based gait-data retrieval systems fall into two cat-
egories, either model based or non-model based. Non-model based approaches such as
[8] and [12] do not consider the structure or dynamics of human gait directly, and use
alternative representations of a walking person. Model based techniques, including [5]
and [13] predominantly use the 3D model of Marr and Nishihara as a structural basis,
coupled with data gained from medical studies detailing the dynamics of human gait.
Paradoxically, current model based gait analysis systems tend only to be able to identify
and track pedestrians, with the non-model based approaches being used to recognise in-
dividuals. Nevertheless, it has been suggested that an approach which is directly related
to the mechanics of walking or body structure may offer improved recognition, [3].

To this end, one recognition measure based on Murray’s work, [9], classifies an in-
dividual’s gait by the observed rotation patterns of the hip and knee, [3]. Initial trials,
with the required data being extracted manually, have shown that characterising gait in
this manner has a significant potential for recognising individuals. Clearly, manual de-
termination of the required gait-data is an undesirable process and difficulties can arise
due to the self occlusion of the legs, resulting in missing data for those frames of the se-
quence. To overcome this problem, Cunado currently employs a curve fitting procedure to
smooth the measured data and interpolate values for the missing segments. Accordingly,
to achieve the desired aim of a fully automated system, a feature extraction technique is
required to identify the position of the legs in each frame of an image sequence detailing
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a walking person.
One such technique is the Velocity Hough Transform which was originally developed

to locate moving objects from sequences of images, [11]. The VHT is a global evidence-
gathering feature extraction technique which employs motion in the voting process of
the Hough Transform (HT) as an inter-frame mapping. The inclusion of motion in the
voting process provides several benefits, the first of which is that the motion exhibited
by an object can be employed as a means of identification. The combination of motion
with structural information pertaining to the feature of interest, bestows the VHT with im-
proved feature extraction capabilities, compared with methods which consider structural
information alone.

Inclusion of motion in the evidence gathering process also enables the integration of
information present in each individual frame of an image sequence over the sequence as
a whole. Hence, if information is missing in one frame, due to corruption by noise or
the presence of an occluding object, the VHT is still able to accumulate a full description
of the feature, as long as the information is present in another frame of the sequence.
The VHT therefore, offers improved immunity to noise and resilience to the effects of
partial occlusion, compared to feature extraction techniques which consider each frame
of a sequence individually, [11].

Accordingly, being able to identify features with a particular structure which exhibit a
certain type of motion from a sequence of images, the VHT is ideally suited to the problem
of gait analysis. Furthermore, the VHT is a global technique which is not dependent
on good initialisation. Moreover, the global integration of information that occurs over
the whole image sequence, enables model parameters for frames where data is missing,
e.g. due to the self occlusion of the legs, to be determined from the evidence that is
gathered from the preceding and subsequent frames of the sequence. However, to enable
the determination of the required gait-data the VHT must be reformulated to identify legs,
which can be modelled as a pair of articulated lines jointed at the hip.

The following section introduces the basic concepts of the VHT and extends the the-
ory to enable the extraction of pairs of articulated lines, i.e. legs. The paper continues
by discussing certain implementation issues associated with the VHT, namely the com-
putational time that is required and memory demands and attempts are made to address
these issues through use of a genetic algorithm. A GA based approach is described, which
offers equivalent feature extraction capabilities to the VHT, yet at a fraction of the com-
putational requirements. Results of the new gait-data feature extraction technique are
presented in section 3 and the conclusions which can be drawn from this work, together
with possible avenues for future work, are discussed in section 4.

2 Velocity Hough Transform

The VHT was originally proposed in the context of extracting circles, moving with con-
stant linear velocity, from a sequence of images. The polar parametric form is used to
identify possible initial centre co-ordinates of a moving circle, given a range of radii and
potential velocities to search over.

x= cx+vxt+ r cosθ y= cy+vyt+ r sinθ (1)

Equation (1) is the polar parametric form of a circle moving with constant linear velocity,
wherecx andcy are the centre co–ordinates,r is the radius,x andy are the edge point
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co–ordinates andθ varies from 0 to 360Æ, see figure 1. The velocity of the circle along
thex andy axes, measured in pixels per frame, is denoted byvx andvy, respectively.t is
the time reference of the current frame, relative to the initial frame of the sequence, where
t = 0. By employing equation (1) in a similar manner to the standard HT, it is possible
to determine the structural and motion parameters of any circle present within an image
sequence, given that each frame is labelled with a time reference value, relative to the
initial frame, and assuming that the circle exhibits constant velocity only.
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Figure 1: Parametric representation of a moving circle

Hence, the extraction of a circle moving with constant linear velocity requires a 5-D
accumulator space to store votes for the parameters:cx, cy, r, vx andvy. In each frame,
once an edge pixel is encountered, equation (1) is employed to identify the possible initial
centre co–ordinates for a predefined range of radii andx andy velocities, given the time
reference,t, of the current frame. The accumulator cells corresponding to each parameter
combination, generated by the current edge pixel, are then incremented. Once all edge
pixels in the current frame have been processed, the process repeats for the following
frame of the sequence, voting in the same accumulator, until all frames of have been anal-
ysed. The result of the voting process is a peak in the accumulator space corresponding
to the best estimate of the circle’s parameters. As with the standard HT, multiple features
lead to multiple peaks in the accumulator space, with each peak corresponding to the
parameters of a particular feature.

However, to perform the desired task of locating the position of a pedestrian’s legs
in each frame of an image sequence, the VHT requires reformulation to extract pairs of
articulated lines.

2.1 Articulated Line Extraction

Figure 2 shows a model of a pair of articulated lines, defined by the parameters:Ix, Iy, A,
L andW. Ix andIy are thex andy co-ordinates of the intersection point of the two central
lines, respectively.A is the angle between the lines,L is the length of each line andW
is the width. Accordingly, it is possible to approximate a pair of legs with such a model,
where the intersection point of the two lines corresponds to the position of the hip. The
dynamics of gait can then be modelled by varying the appropriate model parameters with
time.
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Figure 2: Articulated Lines

Human gait is periodic and medical research has shown that the rotation pattern of
each thigh during a gait cycle is approximately sinusoidal in nature, [9]. Hence, variation
of the model parameterA is also of a sinusoidal nature to parallel this behaviour.

A= BAsin(ωAπt+φA) (2)

BA corresponds to the amplitude of the parameter variation with timet andωa andφA are
the associated frequency and phase of the variation.

Similarly, a person’s lateral motion can be modelled as a constant forward velocity
coupled with a sinusoidal term, [9]; see equation (3).

Ix =VIx+BIx sin(ωIxπt+φIx) (3)

Integrating this expression with respect to time leads to equation (4), which defines the
absolute position of the model’s intersection point, or hip, for a given timet.

Ix = Ixt=0+VIxt+
BIx

ωIx
sin(ωIxπt+φIx)�

BIx

ωIx
sin(φIx) (4)

Ixt=0 is the initial x co-ordinate of the intersection point andVIx is a constant velocity
term. BIx is the amplitude of the sinusoidal variation andωIx andφIx are the associated
frequency and phase. The final term of the expression is a constant of integration which
ensures that there is zero displacement fromIxt=0 at timet = 0. Motion in they axis is
currently not considered, i.e. a person is assumed to be walking on a flat surface parallel
to the plane of the camera.

Clearly, this model is only an approximation, as consideration is not given to inde-
pendent motion of the lower leg throughout the gait cycle, i.e. there are no knees. Never-
theless, the model is sufficiently accurate to determine the relative motion of the thighs,
and corresponding hip rotation pattern, which is one of the major cues for recognition,
[3]. However, the proposed model has 13 defining parameters which requires a 13 di-
mensional accumulator space in which to gather evidence. If implemented as previously
described, the VHT becomes impractical for such a high dimensional parameter space, as
the computation time and storage demands increase dramatically with the size of the prob-
lem. Attempts have been made to address this problem for the conventional HT which are
directly applicable to the VHT.
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One method is the use of extra data in the form of edge direction information to
limit the number of accumulator cells addressed in the voting process, [6]. Moreover,
edge direction information can be employed to decompose the parameter space of the HT
incurring a saving in terms of both computational complexity and storage requirements,
[1]. However, decomposition of the parameter space may lead to discrimination problems
between features. Alternatively, the calculation of the HT’s accumulator space can be
re-ordered, [4], enabling subspaces of the Hough space to be examined in turn, resulting
in a significant decrease in the amount of memory required to implement the technique.
Although, this method offers no saving in terms of the overall computation time.

An alternative approach, is to employ a genetic algorithm. The VHT, along with all
Hough based techniques, performs an exhaustive search of a given parameter space to
determine the best estimate of the parameters of an instance of a particular feature present
in an image. A GA however, performs a heuristic search of parameter space, incurring
a significant saving in terms of the amount of memory and computational time required,
without sacrificing resolution in the parameter space or the need for decomposition.

2.2 Genetic Implementation

A GA based VHT (GaVHT) employs a population of chromosomes, each of which rep-
resents an instance of the feature of interest, namely a model of the legs. The gait model
has 13 defining parameters and hence each chromosome consists of a string of 13 genes,
each of which is a binary representation of a particular model parameter.

The search for the optimal gait parameters is an iterative procedure where randomly
initialised chromosomes are selected according to their fitness and combined, using the
genetic operatorscross-overandmutation, to produce a new generation of chromosomes.
The fitness of a particular chromosome is determined by how well the feature template it
represents matches the image data. As the VHT is concerned with extracting a moving
pair of legs, the template is a multi-frame template which is matched across the whole
image sequence. Hence, the fitness of a chromosome is determined by the number of
pixels on the template it represents, which coincide with the image data. Strictly, this is
actually the reverse of the VHT, where, like all Hough based techniques, image pixels are
mapped to instances of a model, or template, and is the means by which the HT offers
improved performance over conventional template matching. The genetic implementation
however, maps instances of a model to the image data and hence performs conventional
template matching. Nevertheless, the results are identical, [14].

The genetic operatorscross-overandmutationare probabilistic operations which are
performed on the binary bit strings of the individual chromosomes.Cross-overuses a
pair of parent chromosomes and cuts them at a random position in their bit strings. The
opposing sections of each parent’s bit string are then recombined to form two children,
e.g. consider the chromosomes 0100

�
�1010 and 1011

�
�0001. If the position between bits

4 and 5 is chosen as the cross-over point, joining opposing sections of the parents’ bit
strings results in the two new chromosomes 0100

�
�0001 and 1011

�
�1010. Themutation

operator is then employed to randomly mutate the bit strings of the new chromosomes,
complementing the affected bit. The probability of mutation is usually very low, of the
order of 1

1000, and is designed to ensure that some genetic variation propagates throughout
subsequent generations.

As the parent chromosomes are selected in proportion to their fitness, only the fittest
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chromosomes, or those whose gait parameters best match the image data, are used to
create the next generation. Hence, after a number of generations the whole population
is concentrated in the high performance section of the parameter space and eventually
converges on the optimal solution, namely the best estimate of gait parameters for the
subject present in the image sequence.

The next section presents the results of applying the GaVHT to the task of extracting
the gait parameters of subject from a sequence of images.

3 Results

To establish the efficacy of using the GaVHT as the basis for a gait-data retrieval system,
several experiments were conducted. These consisted of determining the position of the
legs of a walking figure in each frame of a temporal image sequence. At this stage of
development, the figure was imaged walking parallel to the plane of the camera against a
plain background to facilitate the extraction process. Each frame of the gait sequence was
digitised and then edge detected using an implementation of the Canny edge detector, [2].
The edge detected frames were then assigned a time index relative to the initial frame of
the sequence and used as the input data for the GaVHT.

The extraction process begins by defining a search range and resolution for each of
the gait model parameters, along with the size of the chromosome population. The first
generation of chromosomes of the GaVHT are randomly initialised and then evolved (se-
lected according to their relative fitness and combined probabilistically usingcross-over
andmutation) over a number of iterations. The evolutionary process is halted if the pop-
ulation satisfies a convergence criterion, i.e. the average fitness of the whole population
is within a specified percentage of the maximum fitness, or a maximum number of gen-
erations is reached. The parameters corresponding to the fittest chromosome of the final
generation are then taken to be the best estimate of the gait parameters for the subject in
the sequence under analysis.

Figures 3 and 4 show the results of applying the GaVHT to sequences of two different
individuals walking. It is clearly apparent, that in both cases the GaVHT has correctly
identified the initial position of the subject and successfully tracked the figure throughout
the sequence. Furthermore, the angular variation associated with the relative motion of
the thighs has been well determined. This fact is demonstrated by the extracted position
of the thighs in each frame of the sequence, although in some instances the influence of
the lower leg has led to an error in the estimated position.

The absence of knees in the gait model is also a source of error, which is most evident
when the subject’s legs are crossing and one leg is bent. At this point, the results of the
GaVHT favour the supporting leg, being the straighter of the two. The lack of knees, is
also a contributing factor in the high estimate of the position of the intersection point, or
hip. Nevertheless, despite the error in the positional estimate of the bent leg, the tech-
nique does correctly identify those frames of the sequence where the legs cross and thus
successfully determines the period of the individual’s gait cycle.

Figure 5 shows the extracted parameter variations for the relative thigh angle,A, and
Ix displacement. Despite the approximate nature of the gait model, distinct differences are
noticeable for the two subjects, suggesting that the technique has potential for recognition
purposes.
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Figure 3: Extracted thigh data for subject 1. Sequences run from top left to bottom right.

To summarise, these results demonstrate that the GaVHT is capable of locating and
tracking an individual throughout a sequence of images. Moreover, the technique can
provide a good estimate of the period of the subject’s gait cycle, in addition to an estimate
of the position of each thigh, which is reasonably accurate for the majority of frames.

4 Conclusions

This paper has addressed the task of identifying the gait-data required to enable the recog-
nition of individuals, through the use of computer vision based techniques. To this end,
a GA based implementation of a global evidence-gathering dynamic feature extraction
technique, the VHT, has been proposed. The GaVHT enables the problems of computa-
tion time and memory requirements, associated with all Hough based techniques, to be
overcome, whilst retaining the fundamental traits of the VHT, namely improved feature
extraction, immunity to noise and resilience to the effects of partial occlusion. In terms
of performance, the GaVHT required approximately two hours on a 75MHz pentium to
process the sequence in figure 3, whereas the results of the conventional VHT presented
in [11], demanded of the order of days to compute for 7D parameter space applied to a
ten frame sequence.

In conjunction with the GA based implementation of the VHT, an articulated line gait
model has been developed to enable the extraction of the relative thigh positions of an
individual throughout the gait cycle. The thigh positions can then be used to determine
the hip rotation patterns of an individual, which are one of main cues used for gait recog-
nition. The efficacy of the model has been assessed through experiments on sequences
depicting a person walking. Results of these trials, demonstrate that the GaVHT is able to
successfully locate and track an individual throughout a sequence of images. Moreover,
the technique is able to identify the period of an individual’s gait cycle and for the major-
ity of the cycle, provide a good estimate of the relative thigh positions. However, for parts
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Figure 4: Extracted thigh data for subject 2. Sequences run from top left to bottom right.

of the gait cycle, most noticeably when the legs are crossing, the thigh position estimates
can be erroneous, due to the influence of the lower leg and the absence of knees in the
gait model. Nevertheless, identifiable differences in the extracted gait parameters for two
subjects suggest a potential for recognition.

To conclude, the GaVHT gait-data extraction technique is able to accurately locate and
track an individual throughout a temporal sequence of images. Furthermore, the algorithm
is able to identify certain components of the gait cycle which are pertinent to the task of
recognition, i.e. gait cycle period and hip rotation pattern, with a reasonable degree of
accuracy. However, current levels of accuracy are insufficient for the extracted data to be
employed as a means of recognising individuals. Hence, improvements to the gait model
are required to attain the necessary level of confidence in the extracted information.

Therefore, the next progression in the development of a GaVHT based gait-data re-
trieval system is the inclusion of knees in the articulated line gait model. The addition of
knees, will not only aid the extraction of the thigh data, but will also provide information
relating to the knee rotation patterns, which is another the cue used for recognition.
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