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Abstract

A novel approach for estimating 3D lip posture from monocular video se-
quences is presented. The lips are modeled as a four bodyclosed kinematic
chainwith each body possessing translational, rotational and prismatic (to ac-
count for deformations) degrees of freedom. Geometric constraints relating
these bodies to each other, and to the face as a whole, are used to constrain the
space of possible lip postures recovered from each image. These constraints
are used with the recently proposed Expectation Constrained Maximization
algorithm to estimate the lip posture from video frames that have been pro-
cessed (using a color segmentation algorithm described here) to identify lip
regions.

1 Introduction

This paper presents a new algorithm for estimating three–dimensional lip posture from
video sequences. We model the lips as four interconnected bodies forming aclosed kine-
matic chainin three–dimensional space. The bodies, or components, two for the upper,
and two for the lower lip, possess translational, rotational and prismatic (i.e. sliding, to
account for deformations) degrees of freedom. A set of model parameters determines the
positions and orientations of these 3D components. These parameters are governed by a
set of kinematic constraints enforcing the geometric structure of the lip components and
their placement in the face. When imaged, lips in a face project to regions in the imaging
plane. A color segmentation algorithm (described in Section 2) is used to identify these
regions in video images. Our kinematic model is then used with the recently proposed Ex-
pectation Constrained Maximization (ECM) algorithm [11] to estimate the model param-
eter values using the segmented images. The use of kinematic constraints ensures that the
recovered model parameters correspond to physically meaningful lip postures. Results
demonstrate the efficacy of our approach indicating that model parameters, specifying
three–dimensional lip position, can be estimated from realistic image data. Recovery of
these lip parameters is important for many applications including visually assisted speech
recognition (speechreading), expression recognition for intelligent interfaces, facial ani-
mation and low bit–rate video coding.

The computer vision literature is rich with techniques for facial analysis and synthesis.
These include parametric flow models [3], optical flow with a finite element face model
[6] and a finite element model for the lips [2]. Deformable contours, coupled with Kalman
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filtering schemes [18, 12] have been employed to track facial movement in general and
lips in particular. Detailed physically based facial models [19, 20, 16] have proven suc-
cessful, especially for face synthesis activities. Point features are discussed in [13] in the
context of face tracking and synthesis. A region based approach is adopted in [15] and
used for tracking and analysis.

Like [15], we adopt regions as our underlying image “features.” Regions (in our case,
corresponding to lip segments) can be reliably extracted from images and provide robust
evidence for object structure and posture. In our approach, however, we couple regions
with a kinematic model of object structure. The use of a 3D model provides support
against problems such as image noise and object occlusion, as well as avoiding issues
such as image registration that must be addressed by appearance based methods.

The paper is organized as follows. Extraction of lip regions is outlined in Section 2
and the ECM algorithm is briefly reviewed in Section 3. Our kinematic lip model is then
presented in Section 4, with results offered in Section 5. A summary concludes the paper.

2 Segmentation

Our algorithm requires segments corresponding to the mouth region along with some
head orientation parameters. To provide a meaningful testbed, we have implemented both
a color–based segmentation scheme and a simple correlation eye–tracker. (Eye locations
provide enough head orientation information for use in our prototype development.) To-
gether, these provide realistic raw measurements supporting adequate evaluation of our
modeling approach.

We have developed a statistical, adaptive, color based segmentation scheme. Each
pixel is characterized by a “feature” vector, namely, the average normalized color,( �nr; �ng)
determined by averaging the normalized color,�nr = R

R+G+B and �ng = G
R+G+B (where

R;G;B are the original color values at a pixel) in a small region around each pixel, e.g.,
a 5 by 5 neighborhood. Several classes, representing areas of interest in the face, are
maintained. Each is characterized by a “feature” mean vector and covariance. Three such
classes are employed, one for the lips and two for skin pixels accounting for the variabil-
ity of skin color over the entire face. A user identifies areas of the head that correspond
to these classes in the first frame of the sequence and the system determines the initial
class statistics using this training data. Subsequent frames are automatically segmented
as follows.

First, the head is segmented from the background using difference imaging between
a background (i.e. object free) frame and the current frame. Next, a feature vector, i.e.
the average normalized red and green values in a neighborhood of the pixel, is computed
for each pixel in the input image. Each pixel is then classified as belonging to that class
i such thati = argmini2C(x � �i)

T��1i (x � �i). Here,x = ( �nr; �ng)T is the pixel’s
feature vector,C = f1; 2; 3g is the set of class indexes and�i is the covariance matrix of
theith class.

Once all pixels have been classified, we perform a recursive update of the class statis-
tics, akin to that performed in recursive least squares processing [10]. This update en-
courages the class statistics to track changes, such as those due to illumination, that cause
the features to vary over time.

At each frame we thus produce a binary image whose “on” pixels correspond to those
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pixels classified as belonging to the mouth region. These binary images are then smoothed
using a symmetric Gaussian filter with small kernel and normalized so that the maximum
value is 255. This filtering generates an image that can be interpreted as a scaled prob-
ability density giving, at each pixel, the likelihood that the pixel belongs to the mouth
region.

Eye positions are recovered using a correlation tracker that is also manually initialized
on the first frame. The tracker then determines eye locations in subsequent frames by
selecting the point of highest correlation between a template (selected in the previous
frame) and the new image. This has performed well on sequences where the head motion
is small. More robust support to ensure adequate performance during events such as
eye–blinks has not yet been implemented. Recent systems, e.g. [4] have demonstrated
correlation based eye trackers that can handle such situations. These attributes could be
easily incorporated into our current system.

Results from the segmentation and filtering process are shown in the figures in Sec-
tion 5.

3 ECM Overview

The Expectation Constrained Maximization (ECM) algorithm [11] couples a probabilistic
imaging model with knowledge of an articulated object structure (as modeled by open and
closed kinematic chains) to recover articulated object posture from video sequences. The
configuration in space of each body in the object is specified by the body’s 3D mean (�i)
and inertial Euler angle rotations (�1i , �2i ) that are measured relative to a fixed coordinate
system. These rotational parameters are used to form a rotation matrix,ROi, giving the
orientation of bodyi relative to an inertial frameO. As each body is symmetric, only
two rotational components are needed. Figure 1 schematically identifies these terms. All
component 3D parameters are collected into the vector� 2 R5N (N = 4 in our model),
that completely determines the posture of the full multibody articulated object.

The ECM algorithm proceeds as follows. Each incoming frame is segmented and
filtered as previously discussed. This smoothed image is interpreted as a probability dis-
tribution corresponding to a mixture ofN Gaussians, one for the projection of each body
onto the imaging plane. Thus, image sites,x = (x; y), are regarded as having been
generated by a distribution with density,p(xj�) =

PN

i=1 �ipi(xj�i). Mixture modei
is characterized by the mixing weight�i (the a priori probability of componenti), the
statistics ( mean and covariance,�i = f�i;2D;�i;2Dg) and the density,pi. The assump-
tion of Gaussian densities is not essential although it does make the mathematics fairly
tractable. The lip geometry is shown in Figure 1; hereN = 4.

Three–dimensional posture estimates for all components from the previous step (as-
sumed valid), denoted�(s), are projected, using scaled orthography1 onto the segmented
image. This projection provides an estimate of the two-dimensional mixture statistics,
�(s). The statistics are then updated via a step of the Expectation Maximization (EM)
algorithm [5, 17], to produce component 2D statistics,�+. The 3D inertial parameters
are inferred (as discussed below) from these 2D statistics and collected into the vector

1A reasonable first order approximation to perspective projection [1]. An orthographic projection assumption
has also been employed successfully in [19] to recover 3D face modeling parameters from dynamic contours
tracked in an image.
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�+.
This intermediate 3D update is seldom kinematically feasible. Thus, we project this

step back to a manifold determined by a set of non-linear constraints (C(�) = 0) spec-
ifying kinematically feasible configurations. The update,�+ is first projected to the
constraint manifold tangent plane. This is followed by a Newton-Raphson (NR) iteration
to bring this tangent plane projection onto the manifold proper [11, 8, 7]. At termination
of the NR, we have determined�(s+1), a new, kinematically valid, estimate of the model
parameters. This estimate is then projected back onto the image plane, a new EM step
taken and the process repeated. We iterate over each frame until the step generated by the
EM is roughly orthogonal to the constraint manifold. This condition implies the model
matches the data optimally in the least squares sense.

As noted above, the 3D parameters must be inferred from the 2D mixture statistics.
Assuming scaled orthography, we can take the upper 2x2 matrix of the full 3D component
covariance,�i;3D to be equivalent to the 2x2 observed 2D covariance matrix,�i;2D [9].
Equating terms, a system of non–linear equations can be formed relating the 3D inertial
rotation parameters of each body (�1i , �2i ) to the corresponding observed 2D statistics. To
arrive at a closed form solution for the 3D orientations, additional knowledge in the form
of shape and orientation constraints is employed. In [11] a shape constraint is enforced
using a set of 3D model eigenvalues specifying the assumed shape (length and width)
of each body in the chain. The observed 2D statistics are “clamped” to ensure they are
consistent with these assumed 3D model eigenvalues. It can be shown that determination
of the 3D�2i rotations can be done without explicit dependence on the numerical value
of these 3D model eigenvalues. (The choice of these eigenvalues does exert an influence
when the components are projected back into the image to begin another EM iteration.)
The�1i rotations are computed in a similar fashion using an orientation constraint. The
interested reader is referred to reference [11] for additional details on the ECM algorithm.

4 Kinematic Lip Model

This section develops the geometric constraint equations relating the lip components to
each other and to the face as a whole. These equations determine theconstraint manifold
(the systemC(�) = 0) employed by the ECM algorithm described above in Section 3.
These constraints ensure the kinematic structure of the lip model (e.g. specified inter-
connections between components) remains valid as we position the four body model at
an appropriate location, orientation and extension so that it optimally aligns with the lip
segment data.

The lips are located on the face and related to other facial features via several con-
straints outlined in this section. Figure 1 shows the overall geometry of the head and face
and introduces notation that will be used below. The vectorn̂Hs =

�e2��e1
k�e2��e1k

, gives the
head sagittal plane normal. The head sagittal plane can be completely specified via this
normal and the point,pHs =

�e2+�e1
2 , lying midway between the eyes.

The lips are represented using 4 interconnected ellipsoidal bodies, two for the upper
lips and two for the lower. Figure 1 shows a two–dimensional projection of the 4 com-
ponent lip model on a frontal face image. The links have fixed variance, or “size,” but
possess translational, rotational and prismatic (or sliding) degrees of freedom. As a re-
sult, they are free to rotate and slide along component centerlines (theêi1 axes). This
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Figure 1: Head and mouth geometry and notation. Lip components have fixed variance
(size, specified as�i1; �i2) but possess rotational and prismatic degrees of freedom ac-
counting for variations in orientation and size. Body centerlines are specified by principal
axes,̂ei1, determined from rotation matrix,ROi specifying body orientation with respect
to inertial frame.

prismatic nature of each component accounts for the variability of lip size. While the
components are free to slide along their centerlines, a variety of constraints, labeledC1 to
C5 must hold and are discussed in the following paragraphs.

C1: General configuration of lip components.The four lip components are connected,
thus intersections must occur between certain components. This constraint can be written
as:

[(êi1)(êj1)��ij ] = 0 (1)

Here, the tuplesi; j assume the values(1; 2), (1; 4), (2; 3), and(3; 4). The notation,[abc]
indicates the scalar triple product ([abc] = a � (b � c)). Equation (1) forces the three
vectors to be coplanar ensuring their intersection.

C2: Bounds on Component Intersection DistancesThe actual intersection distances be-
tween componenti andj, denotedtij can be found in terms of the vectorsêi1, êj1, and

��ij , according to the expression,tij =
[�(��ij � êj1) (êi1)(êj1)]

k(êj1)� (êi1)k2
. While not fixed, we do

require these lengths to be bounded,

L2
ij � t2ij � U2

ij (2)

The valuesLij andUij are fixeda priori constants.

C3: Symmetry Constraints on Distance Terms.While equations (1) and (2) enforce a
specific structure on the parameter estimation process, they may not be enough to ensure
that a valid lip posture is recovered. Because the intersection distance parameters,tij ,
are not fixed, they may simply adjust to account for the data variations. A symmetry
constraint on the distance terms acts to ameloriate this problem.

sijtij � skltkl = 0 (3)

The tuplesf(i; j); (k; l)g take on the valuesf(1; 2); (2; 1)g, f(3; 4); (4; 3)g,f(1; 4); (2; 3)g,
andf(4; 1); (3; 2)g, The terms,sij , take the value+1 or�1 to ensure the product,sijtij
is positive. (The intersection distances,tij , are signed.)
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This constraint may limit the realizable lip posture space that our approach can re-
cover. However, many lip motions, e.g. English speech, as well as common expressions,
are fairly symmetric in nature. Also, it is unlikely that subtle asymmetries (often appro-
priate in animation) can be reliably recovered from the image regions we process. It is
probably better, then, to estimate a reasonable structure reliably and modify the extracted
data if appropriate, e.g. in the case where the estimates are used to drive an animation.
Symmetry constraints also provide a mechanism for dealing with occlusion, e.g., as the
head turns away from the camera so that far side lip components can no longer be ob-
served. In this case, we can account for the unobserved components by reflecting the near
side components parameters we can estimate (using the observed near side segments)
about the head sagittal plane.

C4: Orientation Constraint. An orientation constraint is also employed to ensure the lip
components wrap around the face in the gentle curve determined by the dental arc. The
principal axes of the four lip components, taken two at a time, span a total of six planes.
Two are of particular interest for development of this constraint. The first denoted,P14

is spanned bŷe11 and ê41 with normal given byn̂14 = ê11�ê41
kê11�ê41k

. Similarly, plane

P23 is spanned bŷe21 andê31 and has normal,̂n23 = ê21�ê31
kê21�ê31k

. We can constrain the
orientation between these two planes using a variety of equations. We have found the
following to be stable and effective.

n̂ij � n̂Hs = cos(�) (4)

Here,(i; j) assumes the values(1; 4) and(2; 3). The angle� is a fixed constant for a
particular subject.̂nHs is the head sagittal plane normal.

C5: Symmetry constraint about head sagittal plane.Finally, we force the intersection
point between components 1 and 2,p12, and that between components 3 and 4,p34, to lie
in the head sagittal plane. The following equation dictates the general condition,

pij � pHs

kpij � pHsk
� n̂Hs = 0 (5)

Here,(i; j) assumes the values(1; 2) and(3; 4) specializing equation (5) for the two cases.
pHs defines a point in the head sagittal plane midway between the eyes.

Results presented in the next section, do not reflect enforcing component/component
intersection bounds. Enforcing these inequality constraints in the NR iteration is a current
area of algorithm refinement.

5 Results

Data from three sequences is shown2. In the first, the subject is saying “Two, ” in the
second, saying the word “One,” and in the third making a surprise expression. The first
sequence was collected on a R5000 175 MHz SGI O2 at frame rate (30 fps). The second
two sequences were collected using an R4600 132 MHz SGI Indy, at a sample rate of

2Video clips of our results are available on–line athttp://www-vision.ucsd.edu/˜phkelly/
Work/Work/face.html .
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about 3 frames per second. All three sequences were collected using a Sony Handy-Cam
at 24-bit color and 320x240 resolution (further subsampled to around 160x120 pixels).

Results from the “Two” sequence are shown in Figure 2. The top row shows isoden-
sity contours superimposed on the lip segments produced by our segmentation algorithm;
this segment is the data our algorithm actually processes. The second row shows the same
contours on top of the corresponding intensity image. Note, that the inner density con-
tour does a good job of encircling the mouth interior region. The interior of this inner
contour can be searched for the presence of the tongue and teeth, visible in some frames,
which may prove useful for speechreading systems. As can be seen, the outer and inner
isodensity contours track shape changes similar to active contours.

Spline fits to the posture parameters for the same frames are shown in the bottom two
rows. Such curves are useful for tasks such as motion visualization and animation. In
addition, such contours can provide useful features for analysis activities, such as visual
speech recognition as powerfully demonstrated by Kaucic et al. [12]. The orthographic
projection of the 3D spline onto the imaging plane is shown in the third row. The full 3D
spline is shown at the bottom. The 3D spline is shown for each frame but from different
view points. In the third 3D frame, note the curve corresponding to the bend of the lips
around the face. This is a result of the orientation constraintC4. The generation of 3D
data is an important distinction between our estimates and much dynamic contour work.
The latter typically recovers estimates of contour location in the imaging plane. Our
contour is an estimate of mouth location in 3D. Another, less significant difference, is that
our contour, based as it is on the region data, lies roughly through the center of the lips
rather than around the lips.

The splines curves were produced using cubic B–splines with control points deter-
mined from the estimated posture data. We take the control points equal to the compo-
nent means and component/component intersections. The component means, as well as
the horizontal intersections (i.e. between components 2 and 3 and between 1 and 4) are
used as repeated control points so that the contour interpolates these points. This is con-
sistent with our intuition that the component means are reliable estimates of lip position
and should lie on a contour approximating the lips.

Figure 3 show selected frames from the “One” sequence and Figure 4 shows the “Sur-
prise” sequence. An alternate visualization technique is used in these sequences. Namely,
the projections of 3D body outlines and component axes onto the image. Because we
are actually estimating a mixture, these component projections are, in effect, also isoden-
sity contours. Indicating the posture in this manner is particularly useful to demonstrate
the prismatic nature of the component/component joints that account for extension and
compression of the lips. As can be seen, the algorithm effectively tracks changes in lip
movement. It matches the filtered segments, the data it is actually tracking, quite well.

It is important to note that the “Surprise” sequence (Figure 4) consists of only the
4 frames shown (a result of the short expression duration and slow capture rate on the
Indy). Thus, the difference in segment positions between the first and second frames is
considerable, likewise for the third and fourth. Nevertheless, the algorithm remains stable
and finds a reasonable posture at all frames in the sequence.

While our posture estimation system consistently recovers postures that match the seg-
ments, some discrepancies between the estimates and the intensity images are noticeable.
This is primarily a result of the segmentation process that, as is typical of segmentation
algorithms, will produce segments imperfectly matching the underlying object (in this
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Figure 2: “Two” sequence. Top: isodensity contours superimposed on a segment. Second:
contours superimposed on intensity data. Third: orthographic projection of 3D spline onto
intensity image. Bottom: renderings of spline at each frame from different views.z-axis
darkest and points into page,y-axis down. First frame: viewer looking toward right side
of face. Second: towards left of face, in profile. Third: looking down on lips. Fourth:
viewpoint similar to first.

case the lips). This is especially true of movements where the top lips pull up away from
the teeth. For instance, in words such as “Test,” expressions like a “toothy” smile, and in
the central frames of the “Surprise sequence. In this case, very little segment is produced
for the tails of the upper lip components and most of the component mass lies close to the
top of the component near the intersection point. The estimation process thus produces
components which tend to have excessive in–plane rotation, matching the segments, but
not necessarily our more intuitive expectation of the mouth as defined by its corners.

The addition of more components to the model should ameloriate this problem. To-
wards this end we have designed and are currently evaluating a 6 body lip model that uses
2 modes for each of the upper lip components. Even without this modification, the current
framework effectively captures the posture of the lips using realistic image segments.

6 Summary

This paper has delineated a novel, model–based lip representation and demonstrated its
use for recovery of lip posture in a video sequences. The approach can serve as a substrate
for the construction of facial analysis (e.g. expression recognition and speechreading) and
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Figure 3: “One” sequence. Top: components projected onto segments. Bottom: compo-
nents projected onto facial image. Note prismatic nature of the components. First frame
shows neutral face with eye locations also identified for this sequence.

Figure 4: Several frames from the “Surprise” expression sequence.

synthesis (e.g. animation) systems. The representation describe herein is attractive for a
variety of reasons. These include:Use of regions:parameters are estimated from im-
age regions that can be reliably recovered from noisy image sequences using robust color
segmentation techniques such as the scheme presented in Section 2.Sparse image rep-
resentation:mouth posture is described by a small number (20) of parameters, consider-
ably less than pixel based representations and fewer than some dynamic contour models.
Rich representation:gross shape is determined from component means and intersection
locations. Finer variations in mouth shape can be determined either directly from the
estimated parameters as contours of constant density, or as a spline fit to the component
means and intersection points. Other features can also be extracted from the model. For
instance, we can compute the features mentioned by Massaro and Stork in their work
on speechreading [14] (inner and outer width and height and horizontal separation of lip
peaks). 3D model: a three–dimensional model is employed and 3D parameters esti-
mated. We believe this feature ensures consistent posture estimation despite large head
motion, a hypothesis we are currently evaluating. Three–dimensional posture estimates
may also prove useful for synthesis tasks.
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