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Abstract

Feature matching is a prerequisite to a wide variety of vision tasks. This
paper presents a method that addresses the problem of matching disparate
views of coplanar points and lines in a unified manner. The proposed method
employs a randomized search strategy combined with thetwo-line two-point
projective invariant to derive small sets of possibly matching points and lines.
These candidate matches are then verified by recovering the associated plane
homography, which is further used to predict more matches. The resulting
scheme is capable of successfully matching features extracted from views
that differ considerably, even in the presence of large numbers of outlying
features. Experimental results from the application of the method to indoor
and aerial images indicate its effectiveness and robustness.

1 Introduction

A fundamental problem in computer vision, that appears in different forms in tasks such
as discrete motion estimation, feature-based stereo, object recognition, image registra-
tion, etc, is that of determining the correspondence between two sets of image features
extracted from a pair of views of the same scene [5, 1, 2, 17]. The correspondence prob-
lem, also known as the matching problem, can be defined as that of identifying features in
each set having distinct counterparts in the other set. However, despite efforts by numer-
ous researchers, the problem has proved to be very difficult to solve automatically and a
general solution is still lacking. The difficulty mainly stems from the fact that common
physical phenomena such as changes in illumination, occlusion, perspective distortion,
transparency, etc, can have a tremendous impact on the appearance of a scene in different
views, thus complicating their matching.

Most approaches to solving the correspondence problem exploit metric information,
such as proximity of points, conservation of line orientation, etc. Metric properties, how-
ever, are not preserved under perspective projection. This implies that any method for
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determining correspondence based on metric information, only works for images that
have been taken from adjacent viewpoints. Typical approaches that fall in this category
can be found in [18, 8, 4]. An alternative approach is to exploit information that re-
mains unchanged under perspective projection, and thus can be used for matching images
whose viewpoints differ considerably. In order to derive quantities that are invariant under
perspective viewing, one has to make assumptions regarding the structure of the viewed
scene. The most common assumption made in the literature is that the features to be
matched lie on a single 3D plane in the scene. Planes are common in aerial images as well
as images of man-made environments, and impose strong geometric constraints regarding
the location of corresponding features. Meer et al [9], for example, employ projective and
permutation invariants to obtain representations of coplanar point sets that are insensitive
to both projective transformations and permutations of the labeling of the set. Following
this, a voting scheme coupled with combinatorial search enables them to identify corre-
sponding points in two views. Meer’s method shares some similarities with the technique
developed by Lamdan et al [6] for recognizing planar objects in cluttered scenes. In [6],
an affine camera model is assumed and ageometric hashingscheme that uses transforma-
tion invariant reference frames to index shape information into a hash table is employed.
Recognition is achieved by means of a voting mechanism which compares a given object
against a set of models that are known a priori. Starting with a rough initial estimate of
the homography, Fornland and Schn¨orr [3] propose a two-step method for locating the
dominant plane present in a scene by iteratively solving both for the plane homography
and the stereo point correspondence. Pritchett and Zisserman [13] rely on feature groups
to estimate local homographies, which are then used to compensate for viewpoint differ-
ences and generate putative point matches. In the sequel, RANSAC is employed to verify
consistent matches through the recovery of the epipolar geometry.

In this work, we propose a novel method for determining the correspondence of two
sets of coplanar points and lines. The method exploits results from projective geometry
and is capable of determining correspondence between images that are related by an ar-
bitrary projective transformation. Moreover, it treats point and line features in a unified
manner and is robust to the existence of large amounts of outliers, i.e. features that do not
have matching counterparts in either of the two feature sets to be matched.

The rest of the paper is organized as follows. Section 2 presents an overview of
some preliminary concepts that are essential for the development of the proposed method.
Section 3 presents the method itself. Experimental results from an implementation of the
method applied to real images are presented in Section 4. The paper is concluded with a
brief discussion in Section 5.

2 Preliminaries

In the following, projective (homogeneous) coordinates are employed to represent image
points by3 � 1 column vectorsp = (px; py; 1)

T . Lines having equations of the form
lT � p = 0 are also delineated by projective coordinates using the vectorsl. Since pro-
jective coordinates are defined up to a scalar, all vectors of the form�p, with � 6= 0,
are equivalent, regardless of whether they represent a point or a line. Regarding notation,
the symbol' will be used to denote equality of vectors up to a scale factor. Vectors and
arrays will be written in boldface.
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A well-known projective geometry theorem states that four coplanar features, namely
a pair of linesl1; l2 and a pair of pointsp1;p2, define a quantity that remains un-
changed under projective transformations. This quantity is known as thetwo-line two-
point (2L2P) invariant and is given by the following equation [11]:

2L2P(l1; l2; p1; p2) =
l1 � p1

l2 � p1

l2 � p2

l1 � p2

; (1)

where� denotes the vector dot product. Noting thatli �pj is the algebraic distance of point
pj from the lineli, the2L2P invariant can be interpreted more intuitively as a ratio of
distance ratios, i.e. it is an alternative representation of the cross-ratio.

P1

P2

L1L2

L3

N1N2

Figure 1: The dashed lines, defined by two2L2P invariants, intersect atp2; see text for
explanation.

Using the2L2P invariant, we will prove that points on the plane can be assigned
coordinates that remain unchanged under projective transformations, as follows. Suppose
that l1; l2; l3 are three lines andp1; p2 two points lying on the plane, as shown in
Figure 1. Assume also that2L2P(l1; l2; p1; p2) = �. It is straightforward to show
that all pointsq such that2L2P(l1; l2; p1; q) = � are constrained to lie on a linen1

throughp2, which is drawn dashed in Fig. 1. Similarly, if2L2P(l2; l3; p1; p2) = �,
all pointsq such that2L2P(l2; l3; p1; q) = � lie on a linen2 throughp2. Thus,p2 is
uniquely determined by the intersection ofn1 andn2. Equivalently, it can be stated that
l1; l2; l3; p1 form a basis for the projective plane. The coordinates of a point on the
plane with respect to this basis are given by a pair of2L2P invariants.

Another important concept is theplane homography(also known as plane projectivity
or plane collineation)H, which relates two uncalibrated views of a plane in three dimen-
sions. Each 3D plane� defines a nonsingular3� 3 matrixH, which relates two views of
the same plane. More specifically, ifp is the projection in one view of a point belonging
to� andp

0

is the corresponding projection in a second view, then [11]:

p
0

' Hp (2)

A similar equation relates a pair of corresponding linesl andl
0

in two views:

l
0

' H�T l; (3)

whereH�T denotes the inverse transpose ofH. H has eight degrees of freedom, thus it
can be estimated only up to an unknown scale factor. As can be seen from Eq. (2) and (3),



British Machine Vision Conference 97

a single pair of corresponding features provides two constraints regardingH, therefore the
homography can be recovered using at least four pairs of corresponding points or lines.

3 Planar Feature Matching

Suppose that two views of a planar surface are to be matched. LetS1 andS2 be the sets
of points and lines extracted from the first and second view respectively. The proposed
method employs a randomized search scheme, guided by geometrical constraints, to form
hypotheses regarding the correspondence of small subsets ofS1 andS2. The validity of
such hypotheses is then checked by using the subsets that are assumed to be matching to
recover the plane homography and predict more matches. In the remainder of this section,
the matching algorithm is explained in more detail.

The matching algorithm starts by randomly selecting a small subsetR1 of S1, con-
sisting of three lines andN + 1 points, whereN is an arbitrary positive number. It then
attempts to matchR1 with a subset ofS2 that contains three lines andN+1 points, as fol-
lows. Using the three lines and one of the points inR1, a basisB1 for the projective plane
is formed. Each of the remainingN points is assigned a pair of2L2P invariant values,
as explained in Section 2. Following this, all possible subsetsBi of S2 that contain three
lines and one point are examined to determine whether they could matchB1. To achieve
this, the basesB1 andBi are assumed to be comprised of corresponding features. Then,
the two2L2P invariants computed in the first view for each of the remainingN points
in R1 are used in the second view to predict the position of their corresponding points.
The uniqueness stereo property (i.e. the correspondence between two sets of matching
features should be one-to-one) is enforced by taking into account each point in the sec-
ond view at most once. If allN predicted points in the second view coincide with actual
points, then there is evidence that the two bases are indeed corresponding. To verify this
assumption, a least squares estimate of the plane homography is computed fromR1 and
its corresponding subset inS2. This estimate along with Eq. (2) is used to predict more
points in the second view. If a significant fraction of the points in the second view is pre-
dicted successfully, then the two bases have been matched; otherwise, another basisBi
is tried. In the case that all possible basesBi have been considered, a new subsetR1 of
S1 is selected and the process iterates as described above. Upon termination, an estimate
of the plane homographyH derived from the matched bases is available. If required, this
initial estimate can be refined as follows. Equations (2) and (3) are used to predict more
points and lines in the second view and a robust estimator, such as the Least Median of
Squares (LMedS) [15], is applied to determine a new estimate ofH that is robust to pos-
sible mismatches and errors in the localization of lines and points. More details on the
estimation of the homography from matching features can be found in [7].

Before applying the aforementioned method to real images, a few practical issues
need to be resolved. First, noise in the images will cause the location of predicted points
in the second view to differ slightly from the location of actual points, even in the case that
these points are correct matches. To overcome this problem, we allow for some error by
considering a prediction to be correct when its euclidean distance from the closest actual
point is in the order of a few pixels. Since the operation of predicting points in the second
view occurs frequently, we speed up the process of locating the actual point closest to
a predicted one by precomputing the Voronoi diagram of the points in the second view
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and employing the slab method to locate the nearest neighbor in planar subdivisions [12].
This technique requires time proportional toO(log(m)) for m points in the second view, a
significant improvement compared to the linear time that would be required by the naive,
trivial algorithm. Second, since the combination of two2L2P projective invariants is
not permutation invariant (i.e. the values of the invariants depend on the line pairs used
to define them), care should be taken when attempting to predict the locations of theN

points in the second view usingB1 andBi. More specifically, given a labeling of the
lines inB1, all six (i.e. 3!) possible permutations of the labels of lines inBi should be
considered. Finally, in the case that the two views to be matched have very few features
in common, the randomized iterative selection of subsetsR1 of S1 described above might
degenerate to an exhaustive, combinatorial search which is very time consuming. In order
to avoid this contingency and ensure that the search terminates within reasonable time, a
Monte-Carlo type of speedup technique is employed, in which a certain probability of
error is tolerated [10]. Assuming thate is the fraction of outliers (i.e. features that do not
have a matching counterpart) in the first image, then the probabilityQ that at least one
out ofm random samplesR1 of S1 does not contain any outliers is equal to [10]:

Q = 1� [1� (1� e)
(N+4)

]
m
; (4)

whereN + 4 is the cardinality ofR1. Choosing the probabilityQ around 90-95% and
assuming thate=60%, the solution of Eq. (4) form gives an upper bound for the number
of different setsR1 that should be tried. Note that Eq. (4) is independent of the cardinality
of S1. For each of them trials, a basisB1 is formed from the selectedR1. B1 is then
examined for correspondence with all possible basesBi of S2.

Having described the matching algorithm, the choice of using more lines than points
in the basis sets can now be explained. Real images usually contain less lines than points.
Thus, given a basis in the first view, the bases to be considered as candidate matches in
the second view are less compared to those that would have to be considered in the case
of bases containing more points. Moreover, line segments can be extracted from images
more accurately than points, hence calculations involving lines are more tolerant to noise.
Lines can also help to reduce the sensitivity to localization errors introduced by the point
extractor. Recall from Section 2 that the2L2P invariant is defined in terms of algebraic
distances of points from lines. Therefore, the localization errors can be made negligible
compared to the algebraic distances by preferring points lying far from the lines defining
the invariant.

It could be argued that, instead of attempting to predict the location in the second
view of N points fromR1 and then recovering the plane homography for verifying that
the related bases match, the plane homography could have been used from the beginning.
In other words,B1 could in turn be assumed to match with every subjectBi of S2 and
a homography could be estimated using each such assumption. The reason for not doing
this is that the computation of the homography requires more execution time compared to
that needed to calculate the2L2P invariants and predict the location ofN points in the
second view. Since this is an operation that occurs frequently, it would have a significant
impact on the running time of the algorithm. Furthermore, estimating the homography
fromN +4 matching features yields more accurate estimates compared to those obtained
from using just the four features included in two matching bases. Regarding the choice of
a proper value forN , it should be observed that, asN increases, the number of times the
plane homography is estimated is reduced, while the probability that a random sample of
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N + 4 features fromS1 contains at least one outlying feature is increased (see Eq. (4)).
We have found experimentally that, in terms of running time, a satisfactory compromise
between the above two factors can be achieved forN = 3. Consequently, the maximum
number of iterations found by solving Eq. (4) form is between1400 and1800.

The algorithm described above relies heavily on geometric information, which com-
pared to photometric information such as cross-correlation, is more immune to changes
in the illumination resulting from changes in the viewpoint. Furthermore, the use of the
2L2P invariant enabled the development of an algorithm that handles points and lines
in a unified manner by deducing their correspondence simultaneously. Another important
feature of the algorithm is that, apart from solving the correspondence problem, it can also
detect the case of two sets of planar features that are not matching. This case is reported if,
after completing as many iterations as those prescribed by solving Eq. (4), the algorithm
cannot encounter a subsetR1 of S1 that corresponds to some subset ofS2. Finally, the
proposed algorithm can also be used for identifying the dominant plane1 in the case of
scenes that are not entirely planar [16, 3, 7]. Features that belong to the dominant plane
will be matched, while the remaining features will be treated as outliers.

4 Experimental Results

A set of experiments has been conducted in order to test the performance of a prototype
implementation of the proposed method. Throughout all experiments, the most prominent
point and line features were obtained automatically. Representative results from three of
these experiments are given in this section.

The first experiment refers to the image pair shown in Figures 2(a) and (b). The
images depict a textured poster lying on the floor, imaged from two considerably different
viewpoints. The features extracted from these two images are shown in Figures 2(c) and
(d). Despite the difference in viewpoints, it is clear that almost all features that appear
in Fig. 2(a) have matching counterparts in Fig. 2(b). The results of the proposed method
are shown in Figures 2(e) and (f), in which matching features are labeled with identical
numbers. Running time was 80 seconds on a 180 MHz R5000 SGIO2. Figure 2(g) shows
the result of warping the image in Fig. 2(b) according to a robust estimate of the plane
homography computed with LMedS. Note that this image has been registered with respect
to that in Fig. 2(a), implying that the estimated homography and thus the underlying
corresponding features are correct.

The second experiment is based on a pair of aerial images shown in Figures 3(a) and
(b). Although that the viewed scene is not exactly planar, it is far from the camera and
thus it can be considered to be approximately planar. Figures 3(c) and (d) illustrate the
extracted features. The output of the proposed method is shown in Figures 3(e) and (f),
in which matching features are labeled with identical numbers. Figure 3(g) shows the re-
sult of warping the image in Fig. 3(b) according to the plane homography estimated with
LMedS. Again, this image has successfully been registered with that in Fig. 3(a). In this
particular experiment, a large number of outliers was tolerated. More specifically, about
65% of the features present in Fig. 3(a) do not appear in Fig. 3(b). This clearly demon-
strates the robustness of the proposed method. Owing to the large number of outliers, the
method required approximately 20 minutes of execution time.

1Dominant is the plane on which lie the majority of the extracted features.
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The third experiment employs the well-known “pentagon” stereo pair, shown in Fig-
ures 4(a) and (b). To make the experiment more challenging, the disparities were in-
creased by rotating the right image 95 degrees counterclockwise. The features extracted
from the stereo pair are shown in Figures 4(c) and (d). Figures 4(e) and (f) show the
matching features. Running time was around 7 minutes. Figure 4(g) depicts the result of
warping the image in Fig. 4(b) using the plane homography estimated with LMedS.

5 Summary and Future Work

In this paper, a method for determining the correspondence of two sets of coplanar fea-
tures has been presented. This method has several advantages. First, it exploits geometric
constraints arising from the structure of a scene, without requiring any calibration infor-
mation regarding the camera to be known. Second, it is capable of handling disparate
views, despite phenomena such as illumination changes, occlusions, perspective fore-
shortening, etc. Third, it is tolerant to large amounts of outlying features. Fourth, the
2L2P invariant permits the treatment of the point and line matching problems in a uni-
fied manner. Finally, in order to make a hypothesis regarding the correspondence of two
feature sets, the method avoids a direct comparison of the invariants computed in the cor-
responding pair of views. Instead, the invariants are used to predict the locations of points
in the first view in the second one. The correctness of the match is then assessed using
intuitively appealing euclidian distances between predicted points in the second view and
actual ones.

Current research efforts focus on techniques to improve the speed of the method by
taking into account some photometric information regarding the features to be matched.
Namely, referring to the discussion in Section 3, when given a basisB1 in S1 that is to be
matched with a baseBi in S2, significant reduction in the size of the space to be searched
can be made as follows. Instead of taking into account all possible basesBi formed by
features inS2, only the bases whose component features have photometric descriptions
similar to those of the features inBi ought to be considered. Such a comparison of
photometric descriptions should be made using a loose definition of similarity, so that
intensity changes in the vicinity of features do not prevent the algorithm from identifying
the correct matches. Towards this end, steerable filters, as described in [14], might prove
useful.
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Figure 2: (a, b) two views of a poster, (c, d) the extracted features, (e, f) the computed
correspondences and (g) second view warped according to the estimated homography (see
text for explanation).
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Figure 3: (a, b) two aerial images (courtesy of P. Meer), (c, d) the extracted features, (e, f)
the computed correspondences and (g) second image warped according to the estimated
homography (see text for explanation).
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Figure 4: (a, b) the “pentagon” stereo pair, (c, d) the extracted features, (e, f) the computed
correspondences and (g) second image warped according to the estimated homography
(see text for explanation).


