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Abstract

We investigate the automatic estimation of fish weight from sets of morpho-
metric measurements. Our solution combines a vision system with a robust
regression method, the Support Vector Machine (SVM). Measurements are
taken automatically from two binarised views of each fish in a training sam-
ple, then fed to a quadratic SVM along with approximate weight estimates.
The SVM learns the law linking weight to shapedirectly (without computing
volume) and compensates for several inaccuracies in the training measure-
ments. We suggest a methodology identifying optimal shape measurements
for the task, and report results obtained with a sample of 99 trouts between
300 and 600g, showing good accuracy and reliability, and better performance
with respect to length-weight relations adopted commonly in fisheries sci-
ence.

1 Introduction

This work explores a new way of estimating fish weight from shape using computer vi-
sion. The relation between weight and shape is important both for fish biology [4, 5, 7, 11]
and fisheries applications. Weight measures from shape are approximate as indirect (den-
sity may not be uniform across individuals), but no technology currently allows to weight
directly live, moving fish. The stress induced by constraining or anaesthetizing is strongly
discouraged for most species, and may lead to serious damage for others (e.g., sea bass).

Many studies in fish biology and farming are based on equations predicting weight
from a single shape measure, traditionally length [5, 13], or width in most mechanical
fish graders. In particular, it is common practice to model weight as a function of length
through the allometric equation

W = KLb; (1)

introduced by Fulton [5], whereW is the weight,L the length,K is thecondition factor
(sometimes used as an index of fish health), andb a coefficient close to 3. The inadequacy
of formulae like (1) for weight prediction was pointed out by Fulton himself [5], and,
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more recently, by various researchers [1, 2, 13]. The main inadequacies include the facts
that weight depends really on several shape parameters, that the exponential is in itself an
approximation (especially if isometric growth is assumed, i.e.,b � 3), and that such laws
assume invariance to time, populations and grading conditions, or make hypothesis on the
fish (e.g., sex, age) or on the environment (e.g., temperature, season). The practical ad-
vantage of single-measurement relations are that they are simple, and can be implemented
easily in mechanical devices (e.g., by graded holes) to support fast fish grading.

Vision systems can takemultiplemeasurements in real time, as fish swims in front of
imaging sensors. Therefore, they are well-placed to provide better accuracy of weight es-
timates than mechanical systems, at comparable speed. Indeed experimental and commer-
cial vision systems exist for biomass estimation, counting, species classification, grading
on shape, weight and colour. The crux of existing weight-based graders is that weight
is computed through volume, which in turn is estimated using approximations and fixed
formulae which are assumed invariant against time, populations and grading conditions.

Most of these assumptions would be unnecessary if the systemlearnedthe weight-
shape relation for each fish batch considered, which is the scenario investigated by our
study. An automated learning algorithm, the Support Vector Machine (SVM), learns the
specific relation between weight and a vector of morphometric measurements foreachfish
batch under consideration. Measurements are extracted automatically from two binarised
views of each fish. The basic architecture is illustrated in Figure 1. Instead of using fixed,
approximate formulae to estimate fish weight from one shape parameter, the system tunes
its estimates to thespecificbatch, with a resulting increase in accuracy given a sufficiently
large training set. The law linking shape and weight is founddirectly, without going
through volume at all. There is no need for assumptions on the fish density, notoriously a
variable quantity, nor to assume density constant across batches, as a specific law is learnt
for each batch.

Weight estimationLearning

cameras

Fish shape measuring

Image acquisition

Figure 1:Essential architecture of the prototype.

This paper is organised as follows. Section 2 reviews briefly the main features of
SVMs. Section 3 describes the prototype vision system acquiring morphometric mea-
surements. Section 4 illustrates the learning process, and Section 5 reports the results of
our experimental assessment of the system with a batch of 99 trouts. Finally, Section 6
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discusses our findings and draws some conclusions.

2 Support Vector Machines

A detailed explanation of SVMs would take us far beyond the scope of this paper, so we
limit ourselves to a brief summary with references. SVMs implement a learning tech-
nique useful for solving both classification and regression problems [3, 9, 10, 18]. The
main idea behind SVMs is the minimisation ofstructural riskas opposed toempirical
risk. Intuitively, given a finite number of sample points and a classC of approximating
functions,empirical risk minimisationdetermines the function̂f 2 C which best approx-
imatesf by minimising a certain cost function (e.g., in the least squares case, the sum of
the squared distances of the sample points fromf̂). Apart from robustness considerations,
empirical risk minimisation is a sound minimisation principle only in the presence of a
large number of sample points (here,large means that all the theoretical estimations are
valid in the asymptotic case).Structural risk minimisation, instead, aims at minimising
an upper bound on the approximation error and works also in the case of small number
of samples. This bound consists of a term which accounts for how well the functionf̂
approximatesf plus a term depending monotonically on theVC-dimensionof the classC
of approximating functions (roughly a measure of the approximating power of the given
function class [17]). Therefore, SVMs trade accuracy of the approximation at the sample
points for smoothness of the approximating functionf̂ . As a result, SVMs are able to de-
termine the optimal approximating function, which depend on, say,m parameters, even
in the presence of a number of sample points far smaller thanm.

3 Acquiring shape measurements

LIGHT

BINARIZATION BINARY IMAGE

Figure 2:Schematic of the acquisition system and examples of top and side view before binarisa-
tion. Notice the image of the transparent support used to stand the fish under the camera (top view),
which is eliminated by binarisation.

Although our case study focused on harvested fish, we took into account the main
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requirements of real fish grading environments: high speed, reliable measurements, low
cost. To achieve fast processing and reliable shape measurements, we worked with sil-
houettes acquired by illuminating the fish from the back, and thresholding the raw images.
Measurements were computed from two views: the fish was rested on the translucent top
of a box containing neon tubes (Figure 2), first flat (side view), then vertically using a
transparent support (top view). All fish appear approximately horizontal1.

From the side view, the system computed area, perimeter, length, the ratios area/length
and area/perimeter, and the minimum and maximum widths. The same shape parameters
were computed from the top view, excluding the minimum width, which proved unstable
as too dependent on the pose of the fish. Area is given simply by the number of black
pixels, and perimeter obtained by edge detection followed by chaining and edge follow-
ing. The ratios area/perimeter and area/length indicate elongation. Length and width are
calculated following [15]: we obtain a first, rough approximation of length by calculat-
ing the number of image columns intersecting the fish silhouette. Then, we use a subset
of these columns (e.g., one every 10; the frequency depends on the accuracy desired) to
compute an approximate skeleton by joining the midpoints of the column portions falling
within the fish silhouette. We then compute a piecewise linear approximation of the re-
sulting curve. The fish width at each linear segment is computed by tracing the normal to
each segment; the length is the length of a linear piecewise skeleton along the normals to
the width segments (Figure 3). The minimum width (side view only) corresponds to the
thickness of the fish in the narrowest part between body and tail.

Figure 3: Illustration of length/width estimation: (a) initial skeleton points (column midpoints),
(b) normal sections and final skeleton points.

4 Learning the shape-weight relation

Each fish is associated with a vectorp of n measures (n � 13 in our experiments) taken
from the two views. By showing a number of training points(pj ; wj), wherewj is a
weight estimate for thej-th fish, the SVM determines the best approximating hypersur-
facew = f(p), that is, a relation linking weight and shape parameters. It is important
to notice that, in the case of live fish, the weight estimateswj used in the training stages

1This simulates a design suitable for live fish moving through a mechanical grader, which is currently covered
by confidential agreements.
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may include rather significant errors and even outliers, but these are compensated for by
the robust approximation performed by SVM in the training stage.

5 Using the shape-weight relation: results

We tested the system with a sample of 99 harvested trouts between 300 and 600g approx-
imately2 (see Figure 4). Weights and lengths used for training were measured manually.
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Figure 4:Weights of the trout sample, sorted by weight and plotted against fish index.

The weights were read from a set of electric scales for shop use, nominally accurate to 5g
in our weight range. Lengths were measured using a standard graduated board, with an
uncertainty of about 1cm (as per EU fisheries guidelines).

Testing equation 1.We checked the consistence of our sample with equation (1), with
coefficients computed by linear regression (based onloge(W ) = loge(K) + b loge(L))
[4, 5, 7, 11]. Using the average of the lengths in the top and side views forL, we got
b = 2:177, � = logeK = �1:605, with standard deviations�� = 0:52 and�b =
0:36. The results, summarised in Figure 5 and Table 1, suggest that the hypothesized
relation between length and weight is unsatisfactory [11, 4]. Figure 5 also suggests that
the assumption of isometric growth does not hold satisfactorily for this sample; in fact,
the estimatedb from the weight-length regression was 2.177, not 3; Fulton’sK decreases
with increasing length instead of being almost constant [11].

Testing SVM regression. We then trained a SVM with quadratic kernel using dif-
ferent subsets of the 13 shape measurements available and 98 trouts at a time, each time
estimating the weight̂W of the trout left out. The quadratic kernel is simple, has a limited
number of coefficients, and seems appropriate for the limited weight-length ranges envis-
aged for batch grading on fish farms. We recorded the average and standard deviation of
the percentage error,(Ŵ �Wt)=Wt, whereWt are the weights measured by hand. The
whole test was run for several different subsets of shape parameters, containing increas-
ing numbers of features. The results are summarised in Table 2. We notice immediately
a better accuracy than equation 1 (0% average error and 3% standard deviation without
outliers, less than half of the 7% standard deviation from equation 1), with and without
outliers.

2We report only one real experiment as organising tests with large numbers of fish is a lengthy process, and
this study spanned a few months only.
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Figure 5:Left: result of fitting equation 1 to our data (� = log
e
K = �1:605, b = 2:177). Right:

regression of Fulton’s condition factor. Our sample violates the assumption of isometric growth
(b � 3); in fact, K decreases with increasing length instead of being almost constant.

err st.dev outlrs number err (0 outlrs) st.dev.(0 outlrs)
fixed b -11 % 8 % 7 -10 % 7 %

regression 0 % 8 % 2 1 % 7 %

Table 1:Error analysis for weight estimation. First row: assuming isometric growth (b = 3, fixed,
andlogeK = 4:212). Second row:K; b obtained by linear regression.

Optimal sets of shape parameters.It is evident from Table 2 that not all feature
sets are equally reliable for weight estimation, but produce varying accuracies on the
same data. Indeed, Table 2 allows one to identify theoptimal feature sets(as well as
the most important individual features) for weight estimation, that is, the sets leading to
minimum average error and error spreads. The practical significance is apparent: given a
fish batch, one can identify the sets of shape measurements leading to minimum errors for
practical tasks like sorting, grading and so on. Notice that some shape parameters worsen
the weight estimates because they cannot always be measured reliably: for instance, the
values of area and perimeter would be sometimes skewed by half-transparent fins, and the
minimum-width section could not always be located correctly in the thin top view. Figure
6 visualises the errors of the experiments of the first four lines of Table 2, compared with
the errors of equation 1. Using only the lengths (features 4 and 11) measured in the two
views, the errors are comparable, as expected; adding two unreliable shape parameters
(perimeters: 2, 9) the SVM errors increase; adding reliable parameters (ratios area/length
and maximum width in the top view: 5, 7, 12) the SVM errors decrease.

6 Discussion

We have addressed the estimation of fish weight from shape measurement using a vision
system incorporating SVM-based learning. Equation (1), commonly used in fisheries
applications, makes weight a function of length only, and depends on several restricting
assumptions (fish density constant and invariant to fish batch, temperature, season, time,
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feat.s in set feat.s used err st.dev. err (0 outls) st.dev. (0 outls)
2 4 11 1 % 8 % 1 % 7 %
4 2 4 9 11 1 % 8 % 0 % 7 %
4 4 5 11 12 0 % 6 % 0 % 3 %
5 4 5 7 11 12 0 % 5 % 0 % 3 %
6 4 5 7 11 12 13 0 % 4 % 0 % 3 %
7 3 4 5 7 11 12 13 0 % 5 % 0 % 4 %
7 4 5 6 7 10 11 13 0 % 4 % 0 % 4 %
7 1 4 5 7 11 12 13 0 % 4 % 0 % 3 %
8 3 4 5 7 10 11 12 13 0% 6 % 0 % 4 %
8 2 3 4 5 9 10 11 12 -1% 7 % 0 % 4 %
13 all features 0 % 9 % 0 % 7 %

Table 2: Error analysis with SVM estimation using a quadratic kernel and different feature sets.
One outlier was present in all experiments. Side view: 1=area, 2=perimeter, 3=area/perimeter,
4=length, 5=area/length, 6=minimum width, 7=maximum width. Top view: 8=area, 9=perimeter,
10=area/perimeter, 11=length, 12=area/length, 13=maximum width.
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Figure 6:Average errors of weight estimates using the SVM-computed law (solid lines) and Equa-
tion 1 (dashed-dotted lines). Each graph refers to an experiment with a different set of shape pa-
rameters. Top left: 4 and 11 (first line in Table 2). Top right: 2,4,9 and 11 (second line). Bottom
left: 4,5,11 and 12 (third line). Bottom right: 4, 5, 7, 11 and 12 (fourth line).
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grading conditions, and sometimes isometric growth). These facts limit the accuracy
of weight predictions, both with fixed coefficientsK; b and withK; b specialised for a
given fish batch (found by linear regression) [4, 7, 13]. This conclusion has indeed been
confirmed by our experience.

Our technique does not make any assumptions on the fish batch; its only limit is the
fact that estimating weight from shape is an indirect process depending on an unobserv-
able quantity, density. However, within this inevitable restriction, the technique has many
advantages: fast, binary vision allows one to acquire many shape measurements, not one,
and preserve real-time performance; learning the shape-weight relation for each fish batch
allows one to adapt predictions to specific batches; robust SVM regression tolerates and
compensates for errors in the approximate weight estimates (and shape measurements)
of the training set. Moreover, thanks to the ability of SVMs to generalise from limited
numbers of examples, reliable laws can be learnt from limited percentages of fish from a
rather homogenous fish batch, such as most of those those routinely graded on fish farms.

Our experiments with a batch of 99 trouts indicate a better accuracy for the polynomial
SMVs than for equation 1. Notice that the weights of the fish used (Figure 4) span a rather
wide range; our experience suggests that errors in weight estimates improve significantly
with limited weight ranges, which is the case with farmed fish (fish grown in a same pool
or cage are kept approximately uniform in size and weight). Importantly, our technique
can reveal the optimal subset of shape parameters, that is, the one guaranteeing the best
accuracy for the batch, obviously a crucial information in applications. For instance, in
our experiments area, perimeter and minimum width proved the most unreliable measure-
ments, as very sensitive to the fish position; lengths and maximum widths (in both views)
proved the most critical, i.e., their presence in the feature set was crucial to obtain good
results, followed by the ratios between area and length. A corollary is that larger sets of
shape parameters, even if plausible intuitively, do not imply necessarily better accuracies.
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