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Abstract

The classification of sets of mixed pixels can be accomplished by making
use of the relationship of higher order moments of the distributions of the
pure and mixed classes. As a consequence, the number of equations relat-
ing the means of the distributions can be augmented, providing a number of
linear equations larger than the number of available sensor bands. Thus, the
important advantage the method offers and makes it unique is the fact that
more classes than the available bands can be identified. The capabilities and
limitations of the method are assessed first by the use of simulated data that
closely imitate real data, and also by real data from Landsat images.

1 Introduction

Recently, remote multispectral data collection and automatic processing techniques have
been proved to be very useful tools for many applications in the field of Earth surveys. For
certain applications however, limits in the spatial resolution of satellite sensors and vari-
ation in ground surface cover, restrict the usefulness of the remotely sensed multispectral
data resulting in the presence of mixed pixels. In this case, the observed spectral signa-
ture of pixels is the result of the reflecting properties of a number of surface materials
constituting the area of the pixel.

Among various methods proposed for dealing with the mixed pixel classification prob-
lem, the linear mixing model has been most commonly used. Under the assumption that
each photon that reaches the sensor has interacted with only one cover type, the spectral
reflectance of each mixed pixel in any wavelength, can be considered as a linear combi-
nation of the spectral reflectances of the components that constitute the mixture, weighted
by their relative proportions in the mixture. The spectra of the pure classes [2] are used
as training data necessary to perform the unmixing.
In this paper we investigate the ability to recover more classes than available bands of a
recently proposed method[1]. The method is appropriate for the classification of whole
regions of mixed pixels in a scene assuming that they possess identical composition. The
model is an extension of the linear mixing model: The spectral reflectance of a mixed
pixel in a spectral band is assumed to be the linear superposition of the reflectances of
the classes present in the pixel, weighted by the fraction with which they contribute to
the pixel. To solve such a system of equations for the weights it is necessary to have as
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many bands (equations) as unknowns (pure classes). For the case of sets of mixed pixels
for which we wish to determine the fractions of the pure classes present in them, each set
may be considered as an ensemple of instantiations of the same random variable. Then the
set of linear equations, that relate the spectral reflectances of the pure and mixed classes,
can be supplamented by extra equations that relate the moments of the mixed and the pure
pixel sets. Bosdogianni et.al.[1] used this to add robustness to the set of equations. How-
ever, if we have extra equations, we may be able to solve systems for more unknowns, at
the expense of the added robustness. This paper investigates theoretically this aspect of
the proposed model, in particular with respect to the accuracy it can achieve, its robust-
ness and its breaking points. The investigation is done with the help of simulated sets of
pixels distributed either according to the normal distribution, or according to the uniform
distribution, with parameters that closely follow distributions of real data. Finally, the
method is applied to some real data as well.

2 More components than bands

The set of equations for the mean values of the spectral reflectances for mixed and pure
classes according to the linear mixing model is:

�wi = a�xi + b�yi + c�zi + d�vi (1)

where �wi represents the mean value of the known spectral reflectance of the mixed pixel
distribution in bandi, �xi; �yi; �zi and�vi represent the mean values of the known spectral
reflectances of the four possible cover components in the mixed pixel, anda; b; c andd
represent the proportions of the four components in the set of mixed pixels. Considering
only two bands(i = 2), equation (1) represents a set of 2 equations, one for each band.
Adding the sum-to-one constraint(a+ b+ c+ d = 1), we finally end with a total number
of 3 equations with four unknowns (the four fractions of the components). This set of
equations is supplamented by the equations that relate the second order moments of the
distributions of the pure and mixed classes:

covwiwj = a2covxixj + b2covyiyj + c2covzizj + d2covvivj (2)

wherecovwiwj ; covxixj ; covyiyj ; covzizj ; covvivj represent the covariances of mixed
and pure distributions respectively between bandsi andj(i; j = 1; 2). Equation (2) adds
to the problem 3 more equations. As a result, 6 equations exist in total, with 4 unknowns.
This is the case that inversion can be performed by the Constrained Least Square Error
method. The proportionsa; b; c; d can be calculated subject to the constraints that they
must be non-negative and add up to one. Our purpose is to determine the class composi-
tion of a hypothesised test site using the observed spectral response of the mixed pixels
and the training data that describe the pure classes. The problem will be solved by ex-
haustive search of all possible combinations ofa; b; c andd to find the one that minimises
the total square error. However, the reliability of equations (2) is not the same as the
reliability of equations (1): second order moments of sets of samples are less reliably cal-
culated than first order moments. So, in the definition of the total square error, the errors
arising from the different equations are weighted inversely proportionally to the standard
error with which an indicative quantity of one of the variables can be calculated. As such



692 British Machine Vision Conference

indicative quantities we use the quantities that refer to the set of mixed pixels. Therefore,
the total error we wish to minimize is:

ETOTAL =

2X

i=1

N

varwi
( �wi � a�xi � b�yi � c�zi � d�vi)

2 +

2X

i=1

2X

i=1

N

2(covwij)2
(covwiwj � a2covxixj �

b2covyiyj � c2covzizj � d2covvivj)
2 (3)

To evaluate the performance of the model, the coverage proportions of the mixed pix-
els used are assumed to be known in advance, by ground inspection, so that the results of
the method can be compared with the real proportions. It was assumed that the measured
mixing proportions were:a = 10%; b = 20%; c = 30%; d = 40% for four hypothetical
classes X,Y,Z,V. For training, artificially created data were used, presumed to be image
training data extracted from a specific image. An algorithm was developed to implement
the above equation which exhaustively searches all the possible combinations of the pro-
portions and returns the one that minimises the square error. Accuracy of�1% for the
percentage coverage was considered to be enough for performing the exhaustive search.
A series of test runs were made to determine the capabilities and limitations of the chosen
model. We were especially interested in the accuracy of estimation of the proportions and
the effect on it of the characteristics and the number of sample points used. The following
section gives the results of the simulations.

3 Simulation results

3.1 Normally distributed data

As a first stage of assessing the model, normally distributed training data were chosen to
be used. In general, this type of distribution is very commonly used in remote sensing
applications. The simulated data that represent the pure and mixed classes were cre-
ated so as to approximate as much as possible, the real data found in remote sensing
applications[1]. The means and the covariance matrices of the sets representing the pure
classes were chosen as shown in Table 1. The mean and covariance matrix of the mixed
class were computed from them using the proportions we chose.

Class Mean Mean Variance Variance Covariance
(band 1) (band 2) (band 1) (band 2) (bands 1,2)

X 10 25 15 25 12
Y 40 40 25 7 5
Z 25 20 12 20 10
V 20 40 18 15 8
W 24.5 32.5 5.11 4.73 2.5

Table 1: Statistical characteristics of the pure and mixed classes normally distributed

Using the values of Table 1, five two-dimensional distributions for the five compo-
nents were created by random number generation. For evaluating the applicability of our
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model the effect of the size of the pure and mixed data set on the proportion estimation
was examined. So, in a first series of experiments the mixed class was represented by 500
samples, but the pure classes, by numbers varying from 200 to 8000. For each combina-
tion of values 100 different sets of pixel sets were drawn. For each set of pixel sets the
proportions were estimated as described above and the percentage error was calculated for
each variable. Then, these errors from the 100 sets of pixel sets were used to calculate the
mean and the standard deviation of the expected percentage error. The results are shown
in Figure 1.
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Figure 1: Mean relative error of proportion estimation over 100 experiments versus the
size of the pure data set for normal distributions for 500 points of mixed data. The true
values of the proportions are:a = 10%; b = 20%; c = 30% andd = 40%.

In the second series of experiments, the pure classes were represented by 500 samples
each and the mixed class by 200 up to 8000. Again, 100 different sets of sample sets were
created for each combination of populations and statistics over the errors of the method
were compiled. These results are shown in Figure 2. The error bars represent the standard
deviation of the error distribution for each set. The extreme errors represent the highest
and lowest values of errors observed in every test. It is obvious that the errors obtained for
the case of 500 points proved to exhibit quite high values. Thus, to overcome the problem
of undersampling, we performed both the previous experiments using 10000 points to
represent the mixed class in the first experiment and the pure classes in the second. The
results of the simulations in Figures 3,4 show a great improvement in the performance
of the method. It seems that 3000 points of pure or mixed data is enough to provide
an insignificant error. It may also be noted that the smallest proportions are estimated
with less accuracy than the largest ones. Furthermore, it seems important that a sufficient
sample size of mixed pixels is available since the model performs better in the case when
the mixed class is better defined than the pure classes.
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Figure 2: Mean relative error of proportion estimation over 100 experiments versus the
size of the mixed data set for normal distributions for 500 points of pure data.
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Figure 3: Mean relative error of proportion estimation over 100 experiments versus the
size of the pure data set for normal distributions for 10000 points of mixed data.The true
values of the proportions are:a = 10%; b = 20%; c = 30% andd = 40%. The dashed
lines indicate the minimum and maximum errors and the bars the standard deviation of
each distribution of errors.
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Figure 4: Mean relative error of proportion estimation over 100 experiments versus the
size of the mixed data set for normal distributions for 10000 points of pure data.The true
values of the proportions are:a = 10%; b = 20%; c = 30% andd = 40%. The dashed
lines indicate the minimum and maximum errors and the bars the standard deviation of
each distribution of errors.

3.2 Uniformly distributed data

Table 2 gives the statistics of the uniform distributions of sample points created. To create
one such set, a large number of sample points was created over a square area which
was subsequently clipped to have a polygonal shape that somehow resempled the shape
of the distributions of the real data in [1]. Each mixed pixel was generated as a linear
combination of individual pure pixels which were discarded from the pure distributions.
Figures 5,6,7,8 show the results obtained for these distributions. All experiments were

Class Mean Mean Variance Variance
(band 1) (band 2) (band 1) (band 2)

X 8.1 12.6 21.5 27.8
Y 38.4 43.6 37.6 42.8
Z 23.0 27.3 16.6 23.5
V 16.0 23.2 36.8 41.7

Table 2: Statistical characteristics of the pure and mixed classes uniformly distributed

contacted in the same format as the experiments for the Gaussian distributions. The errors
here seem to be less dependent on the number of samples and smaller than in the case of
Gaussian distributions.
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Figure 5: Mean relative error of proportion estimation over 100 experiments versus the
size of the pure data set for uniform distributions for 500 points of mixed data.
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Figure 6: Mean relative error of proportion estimation over 100 experiments versus the
size of the mixed data set for uniform distributions for 500 points of pure data.The true
values of the proportions are:a = 10%; b = 20%; c = 30% andd = 40%. The dashed
lines indicate the minimum and maximum errors and the bars the standard deviation of
each distribution of errors.
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Figure 7: Mean relative error of proportion estimation over 100 experiments versus the
size of the pure data set for uniform distributions for 10000 points of mixed data.
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Figure 8: Mean relative error of proportion estimation over 100 experiments versus the
size of the mixed data set for uniform distributions for 10000 points of pure data.The true
values of the proportions are:a = 10%; b = 20%; c = 30% andd = 40%. The dashed
lines indicate the minimum and maximum errors and the bars the standard deviation of
each distribution of errors.
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4 Application to real satellite imagery

The first problem when working with real data is the difficulty of obtaining sets of pixels
of pure classes from which the statistics of the pure classes can be computed. This prob-
lem can be solved by extracting the statistics (mean values and covariance matrices) of
the pure classes from mixed sites with composition known by ground inspection[1].

We had 23 sets of mixed pixels with known proportions which we used to ‘train’ the
algorithm i.e. to derive the characteristics of the pure classes using least square error for
solving the systems of the linear equations (one system per calculated statistic). Further,
we had 8 sets of mixed pixels also with known mixed proportions, but these were used
for testing our method in deriving these proportions. Both training and testing data were
derived from Landsat images which are 7-band images. However, to test our method
we made use only of two bands, the red and the infrared one. Four pure classes were
known to be present in these mixtures: soil, aleppo pine, maquis and phrygana. Each
set contained about 100 pixels. The statistics of the pure classes as estimated from the
regression analysis are quoted in Table 3, where S stands for soil, AP for aleppo pine,
M for maquis and P for phrygana. Having determined the statistics of the pure classes,

Class Mean Mean Variance Variance Covariance
(band 1) (band 2) (band 1) (band 2) (bands 1,2)

S 55.35 56.91 87.15 77.72 73.12
AP 23.37 46.12 16.44 4.60 -5.05
M 20.15 50.28 51.01 99.47 16.60
P 13.7 24.88 21.33 6249 37.27

Table 3: Statistical characteristics of the pure classes as estimated from real sites.

the model was utilised for calculating the composition of the 8 sites which were used
for testing. Two criteria for evaluation of the model were used. According to the first
criterion, the classification is considered successful (hit) if the dominant class is correctly
identified, otherwise, it is considered a “miss”. According to the second criterion, we have
a “hit” if the dominant class is identified within�15% of its value identified by ground
inspection. The results of the classification are shown in Table 4.

Site Ground Method Results Results
number S AP M P S AP M P criterion1 criterion2

1 5 0 50 45 0 25 45 3 HIT HIT
2 0 0 85 15 8 0 57 35 HIT MISS
3 15 65 0 20 42 58 0 0 HIT HIT
4 10 50 0 40 33 57 1 9 HIT HIT
5 35 35 5 25 3 58 4 8 HIT MISS
6 30 50 5 15 13 42 35 1 HIT MISS
7 60 10 0 25 55 4 31 1 HIT HIT
8 5 55 10 30 6 44 0 5 HIT MISS

Table 4: Comparison of the classification results of our model with the ground truth data
of 8 test sites.
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As can be seen, our model performs very well in identifying correctly the dominant
class in the scene. It also showed ability in classifying the dominant class within accept-
able limits, in half of the cases.

5 Conclusions

Real data are neither Gaussianly distributed nor uniformly. Real distributions are usually
something in between these two cases. It was shown that in general 2000-3000 sample
points are necessary for each class, for an acceptable level of error (error of the order
of 5 � 10%). Such error levels are compatible with the errors in ground data[1] and
one should not expect to do much better than that using satellite images. Having a few
thousand pixels per class is equivalent to having regions of size30 � 30 to 100 � 100
pixels to classify. For Landsat images with30m resolution this corresponds to1km2 to
9km2, for SPOT data to0:1km2 regions of uniform coverage on the ground. This is not
unrealistic. In particular, data collected from sensors with even higher resolution will be
even more appropriate for this type of approach to spectral unmixing. The results, from
applying the method to simulated data show that it presents high accuracy in identifying
the primary class, and relatively low accuracy in small proportion estimation. The results
with real data can be considered satisfactory, since the sets of pixels used, contained far
fewer pixels than the above quoted numbers for reliable estimates. It should also be noted
that the method was quite easy to implement and of low computational cost.
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