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Abstract

In this paper, we discuss a method for representing and matching planar
curves. The technique is based on using calculations from concentric circles to
represent each curve by two sets of angles. The angles are defined by vectors
constructed from the center point of the circles and the points on the curve
trace that intersect each circle. The circles have incrementally increasing radii
represented by the minimum radius and the radius increment value. The
number of circles used specifies the level of abstraction at which the curves
are represented. This representation is invariant to translation and rotation
transformations. Experiments with different classes of curves have shown that
our technique is robust to digitization errors and noise effects, and can
perform well when the number of concentric circles are relatively small. In
particular, we describe the potential applicability of this technique to
fingerprint identification problem.

1 Introduction

Curve matching is the approach used to find the best fit between two curves. By best fit,
we mean that two curves can be aligned together such that a section or subcurve from
one curve is geometrically similar to that of the other curve. The importance of curve
matching is due to its wide applicability in computer vision and object recognition
systems. Curves represent boundaries of objects, lines in fingerprints, and contours in
maps. Relationships between different objects can be mapped into relationships between
the curves extracted from these objects.

This paper presents an approach to representation and matching of two-dimensional
planar curves using concentric circles information. The approach is invariant to
translation and rotation transformations and does not require the curves to possess
critical points or breakpoints. In addition, the computational complexity of matching
phase is � �MO  where M  is the number of circles used for the representation and is

much less than n  (number of points on the curve). It has a hierarchical nature in which
curves can be represented using hierarchy of abstracts. This property promotes the
parallelization of matching to improve performance and eliminate unnecessary testing.

Previous research on curve representation and matching ([1]-[11]) can be
categorized into several classes. Wolfson [1] presented two algorithms for curve
matching that fall under the curvature-related [12] class of algorithms. His algorithms
used the characteristic strings to represent the curves. The characteristic strings of two
curves are matched together to find a set of possible candidate matches. The candidate
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matches are mapped back to the original curves where error is calculated for each pair.
The best result is returned. The methods are translation and rotation invariant. The two
algorithms differ in matching of characteristic strings. While the first one uses a simple
string-matching algorithm that requires one more step to quantize the characteristic
strings, the second method maintains shift accumulators and considers a tolerance

measure � . The latter is more robust but has an � �2nO  worst-case complexity. Our

matching algorithm uses the more compact concentric circles representation for
matching and its complexity depends linearly on the length of the representation vector
which is less than that of the characteristic strings.

Another approach suggested by Freeman [5] applies to closed or open curves. We
only consider the open curve problem in our approach, but suggest scene-matching
approach that can apply to closed curves. Freeman's approach belongs to the feature-
calculation class of algorithms. For open curves, his approach uses discontinuities in
curvature (DICs) [13] to break curves into segments and establish correspondence
between different segments from different curves. For each segment, the features
calculated are:
1. Length of segment divided by the distance between end points of segment.
2. Total "bay" area divided by square the distance between end points of segment.
3. Total "peninsula" area divided by square the distance between end points of segment.
4. Maximum "bay" depth divided by the distance between end points of segment.
5. Maximum "peninsula" depth divided by the distance between end points of segment.

The above features are translation, rotation and scale invariant. The invariance to
scaling results from normalizing by the distance between end points for the length
features and square that distance for the area features. Our concentric circles
representation finds breakpoints as a derivative of the algorithm and does not require
their existence beforehand.

The third class, template-based approach, was introduced by Turney et al. [14] for
recognizing objects using their boundary curves. Objects exist in a scene and may be
partially occluded. Every object is represented by a set of templates. A template is a
two-dimensional boundary curve of the object and is represented by a set of "salient
features". Each salient feature (also known as subtemplate) is distinct on the template
and distinguishable from other templates. It has a weight factor (called "saliency
measure") that measures its distinctiveness. If i�  is a subtemplate of template T , and

iw  is the weight associated with it, then
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���
�

i
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i ww
�

(1)

where �  is the number of subtemplates of T .

Finding the saliency is accomplished by correlating every template against all other
possible templates. A database is maintained to keep all templates and subtemplates in
the system. These features are not local to the object itself. Thus, the weights need to be
updated whenever a new object is considered and only those in the system can
participate in the matching and recognition phases. The method is useful in product
assembly lines where objects available to the system are known.

In the following sections, we present the concentric circles representation and
matching algorithms. We will also present fingerprint recognition work as a potential
application of the algorithm and conclude with ongoing research and future work.



British Machine Vision Conference176

2 Concentric Circles

2.1   Preprocessing

In the preprocessing phase, captured gray-scale images were smoothed using an "edge-
preserving" smoothing technique. Four spatial averaging filters in the neighborhood of

ww�  were used. These filters calculate the averages along the horizontal line, vertical
line, and the diagonals passing through the pixel whose value is to be updated. The
algorithm updates the pixel value with the average that results in minimum variance.
This technique is sometimes called "averaging by minimum variance". Binarization is
achieved by a threshold value. We adopted a local thresholding approach. Thinning or
skeletonization of curves is used to obtain 1-pixel wide curves. The thinning algorithm
preserves the 8-neighborhood connectedness while eliminating redundant pixels.

2.2   Representation

Concentric circles representation uses 8-neighborhooh chain codes that encode trace of
curves as input. From that, a curve is represented by two sets of angles

� �Mii ���� 1:�  and � �Mii ���� 1:�  corresponding to angles between vectors

centered at a point, 0p , on the curve trace. The procedure is to draw circles centered at

0p  with incrementally increasing radii. The points at which these circles intersect the

curve are marked and used as the tip points of vectors initiated from 0p . Each vector

will have a magnitude equal to the radius of the circle at which the intersection
occurred. It is important that the curve intersects any circle at two points only. When a
situation occurs that a curve intersects a circle at more than one location on each side of
the center point, the curve will be segmented. In fact, this is the criterion we will use to
segment the curves, and each segment will be represented by the two sets of angles
between the vectors at every circle. The circles will have a minimum radius, a maximum
radius, and an increment by which two consecutive circles differ in radius.

The angles for a given circle ic  whose radius is ir  are calculated as follows: find

two points on the curve segment intersecting this circle. Mark these points �

ip  and �

ip

depending on their location with respect to 0p . The angle between vectors �

ipp0  and

�

ipp0  is the i th element i�  (indexed by ir ) in the first set. For the i th element of the

second set, the angle i� between �

�10 ipp  and �

ipp0  is chosen. �

�10 ipp  is the vector

from the circle whose radius is 1�ir  ( rrr ii ���
�1  and is considered constant, but it is

not required to be so). The angles are graphically represented in Figure 1.
Given a segment of some curve, the algorithm consists of two steps. The first step is

to choose the center point of all the circles. The second step is to calculate the
representation of the curve segment. The following are the two steps, and the procedures
involved in both of them.
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Figure 1: Graphical demonstration of the concentric circles representation angles.

� Determine 0p  on the curve segment.

1. Connect the two end points of the curve segment.
2. At the mid point of the connecting line, construct a perpendicular line. 0p  is the point

on the curve segment intersecting that perpendicular.
� Determine the curve representation.
1. Initialize minrri � .

2. Repeat the following until maxrri �  or no more points are found

a. find the furthest point �

ip  to the right of 0p  such that the length of �

ipp0  segment

is less than or equals to ir . If it is less than 1�ir , then stop.

b. find the furthest point �

ip  to the left of 0p  such that the length of �

ipp0  segment

is less than or equal to ir . If it is less than 1�ir , then stop.

c. calculate i�  as the angle between �

ipp0  and �

ipp0 .

d. calculate i�  as the angle between �

�10 ipp  and �

ipp0 .

e. increment ir  by r� .

Figure 2 demonstrates three circles that were used for the representation of a curve.
In this example, we overlaid the circles on the original curve at point 0p . Using the

same figure, one can identify the vectors and calculate the radius-angle information
based on the above algorithm. We calculated the angles and tabulated the representation
in Figure 2(d). According to this information, we were able to recreate the points on the
curve that intersected the circles.

To reconstruct the curve, we used straight-line segments to connect every two
consecutive points (Figure 2(c)). No information about the curve segment between these
points can be inferred from the representation. A large increment value of radius means
that more information about the curve segment is abstracted out or lost. This radius
incremental value is important to preserve features of the curve and minimize error.
When it is small, features will be detected and we will be able to reconstruct them, but
redundant information such as noise will be included. When it is large, some features
are lost or abstracted out but noise is suppressed. Figure 3 shows a hierarchical
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representation of a curve to demonstrate the effect of radius increment value. The curve
is first represented using one circle. The radius is chosen so that the curve is enclosed by

p0

ri �i �i

1 57� 0�

1.75 118� 7�

2.5 124� -1�

(a) (b)

(c) (d)

Figure 2: Concentric circles representation. (a) Original curve. (b) Representation
circles. (c) Reconstructed curve. (d) Representation sets.

the circle. Then, the radius is divided by two and the curve is represented using two
circles. After that, each radius is again divided by two and the curve is represented using
four circles, and so on. Each case is equivalent to representing the curve at one level of
abstraction. The first case, representation using one circle, is the most abstract
representation. We used four levels of abstraction to represent the curve, and
reconstructed it at each level. Note that the level number is inversely related to the
radius increment value. Thus, we can control the abstraction of the representation by
this value, and adapt it to different applications and environments.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Hierarchical representation of a curve at different levels. (a) and (b) Original
and reconstructed curves using one-circle representation, (c) and (d) using two-circle
representation, (e) and (f) using four-circle representation, and (g) and (h) using eight-
circle representation.
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2.3   Matching

We say that some curve is a covered curve if and only if the following two conditions
are satisfied. Firstly, it does not cross any representation circle at more than two points
with the center point between them. Secondly, the curve's end points are at a distance
less than or equal to twice the maximum radius of the representation circles. A covered
curve has a single representation by the sets �  and �  and it has one center point.
When a curve is not a covered curve, then it will be divided into two or more covered
subcurves or segments. We developed procedures to match two covered curves, and one
covered curve with a general curve (possibly covered). We will start by discussing the
first case and move towards the general one. The procedures are based on matching the
representations of curves provided they were calculated using the same minr  and r�
parameters.

Given two curves C  and D  with representations C�  and D� , respectively, both

curves can be represented by information from an equal number of concentric circles,
with

� �CCCC R ���� ,, (2)

and
� �DDDD R ���� ,, . (3)

For completeness, we include the radii of the circles at which each angle element
was calculated. For example, C3�  and C3�  are the representation angles calculated at

radius rirr CC ���� )1(min3 . This representation supports future extensions to cases

where corresponding radii of different curves are not equal. The number of elements in
each of these sets is M .

When the two curves match, the corresponding angles in the sets must be equal. First

C�  is tested against D�  by comparing their corresponding elements, i.e. iC�  is

compared with iD�  for Mi ,...,1� . If any pair is not equal, the match fails. This test is

sufficient to detect match failure, but in order to conclude that the two curves match,
one more test is required. First, we calculate another set of angles, � . Each element i�

of this set represents the angle between the vector whose tip is at �

�1ip  and the one

whose tip is at �

ip , with radii 1�ir  and ir , respectively, and calculated as given by

Equation (4) for Mi ,...,2�  and 01 �� .

� �1���� iiii ���� (4)

Then, we compare the corresponding sum ii �� �  in both curves. This sum measures

the total deviation of angles at radius ir  from those at radius 1�ir . Geometrically, this

test is important to differentiate between curves that are symmetric about op .

It is preferred to start testing angles corresponding to circles with larger radii, and
then the ones corresponding to smaller radii. The reason is that angles at very small radii
are more likely to be equal even if the curves don’t match. Thus, we will be able to
decrease the time required to report a case where the matching fails.

A comparison that uses equality is appropriate in perfect situations. Practice suggests
that many types of errors present in images of curves causes a test that is based on
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equality to fail, even if the two curves are identical in real world. A modification to this
matching algorithm that is tolerant to errors is more robust. Instead of testing
corresponding angles for equality, a relaxed condition would be to test if the absolute
difference between them is less than some tolerance. In this case, a measure of
representations’ test is used. Equations (5) and (6) represent the mean square errors
between the corresponding representation sets.

� � � �
2

1 max

1
�
�

��	

M

i
iDiC

i
CD

r

r

M
MSE �� (5)
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2

1 max

1
�
�

�
���
�

M

i
iDiCiDiC

i
CD

r

r

M
MSE ���� . (6)

In our implementation, we chose a variable tolerance that is a function of the radius.
Experiments showed that it is recommended to have tolerance values that get smaller as
the radius increases. For both tests, we used functions of the form given by Equation (7)
where K  is a constant that can be different in both tests.

rir

r
KiT

���

�
�

)1(
)(

min

(7)

Note that the tolerance for the smallest circle ( 1�i ) is given by Equation (8) which is
the largest value.

minr

r
K

�
(8)

2.4   Performance

If the number of pixels on a curve is n , then preprocessing requires � �nO  computations.

Another � �nO  computations are required to represent the curve using concentric circles

information because every point on the curve trace is visited once to determine its
distance from the center point. When matching is conducted on covered curves (curves
represented by two sets of angles), the matching is � �MO -complex, where M  is the

number of circles used in the representation.
In some cases, the intention is to find a subcurve within a general curve. The

subcurve can be represented by the two sets of angles, but the general curve cannot be
represented. To enable such testing, the concentric circles are calculated for a subset of
points from the general curve and tested against those calculated from the subcurve.
This requires � �nMO  computations.

The number of circles, M , representing a curve plays a significant role in
computations. A worst-case situation occurs when M  is equal to 2/n , i.e. the radius
increment is very small that every point on the curve intersects a circle. In this case, the

complexity is � �2nO . On the average, M is much less than n .

3   Experimental Results

The algorithms discussed in the previous section were implemented using Khoros 2.0
under UNIX operating system on a SUN/SPARC machine.
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Experiments were conducted on different classes of curves. We shall present curves
from fingerprint images to demonstrate the effect of concentric circles curve matching.
The notation fpx.y is used to represent fingerprint image y obtained from person x. Each
fingerprint will generate few hundreds of curves whose representations become the
database of known curves. Figure 4 shows four curves extracted from fingerprint fp7.1.
Assume that this set of curves can uniquely identify the fingerprint. For illustration
purposes, we marked the center of the concentric circles representation of each curve
with a different number. The curves were matched against fingerprints fp1.3, fp2.4, and
fp3.1 representing different individuals. They were also tested against another
fingerprint (fp7.2) of the same individual. The matching results are shown in Figure 5.
The matching curves are marked to identify the curve from Figure 4(b) against which
they match. When a curve matches more than one curve from fp7.1, it is marked by (*).

3

4

1

2

(a) (b)

Figure 4: Fingerprint fp7.1. (a) Selected curves. (b) Center points marked.

A high-level procedure can analyze the arrangement of the marked centers of curves
from fp7.1 to encode the pattern made by the curves. This pattern can be encoded by the
following translation and rotation features:
1. The relative positions of each curve's center point to that of the other curves.
2. The relative orientation of each curve to the other curves.
This so-called pattern analysis procedure will test the results of curve matching to
decide whether the same pattern exists. The inspection of the curves in Figure 5 shows
that the matching curves of fp7.2 have a pattern similar to that of fingerprint fp7.1.

The previous discussion demonstrates one of many methods that can be used to
study the patterns of the matching curves. A better approach to the same problem may
assign weights to different curves based on their distinctiveness. Then, using the weights
of curves and the matching patterns, a decision can be made to whether the two
fingerprints belong to the same individual.

Other curve matching techniques can be used. The concentric circles technique has
many features that can be utilized to speed up the fingerprint identification. Most curves
extracted from fingerprints do not possess distinctive features. So feature-based
approaches will not perform well here. Curve matching using concentric circles can be
performed at high level of abstraction to select a set of candidate curves. Then,
subsequent tests can be done on the set at lower levels of abstraction to fine-tune the
match.
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(d) fp7.2

Figure 5: Curves matching the ones selected from fp7.1 in different fingerprints. (a)
fp1.3. (b) fp2.4. (c) fp3.1. (d) fp7.2.

4   Conclusions and Future Work

In this research, concentric circles information was used to represent and match open
curves. This representation is invariant to translation and rotation. The center of the
circles is the point whose distances from the end points of the curve are equal. From this
center, vectors with tips on the curve points that intersect the circles are constructed.
The representation consists of two sets of angles calculated between vectors. The angles
are indexed by the circles’ radii. The parameters of the representation include minimum
radius, radius increment, and maximum radius. The radius increment value is the radius
difference between two consecutive circles and is constant for a representation.
Matching examines the representations of different curves within some tolerance. The
tolerance is a decreasing function of radius. This is justified by the fact that at higher
radii, small changes in angles result in dramatic changes on the curves. In practice,
tolerance is important to ensure the robustness of the matching test against noise and
digitization errors.

The concentric circles approach has many advantages over the methods discussed in
the introduction. In the template-based approach, a priori knowledge of the objects
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appearing in the application is essential for the calculation of salient features. Our
approach does not require any prior knowledge of the curves. It does not require curves
to possess any critical points. Feature-calculation approach uses critical points to
segment curves. When curves are extracted from partially occluded objects, these
critical points may or may not appear on the curves. The advantage of the feature-
calculation approach is that the representation is invariant to scaling. Our algorithms are
effective when used in a system with large number of curves to reject mismatches at
early stages. The number of circles representing a curve determines the level of
abstraction at which it is represented. The test can be conducted at high levels of
abstraction and repeated again at lower levels for curves that passed the previous ones.
Thus, mismatches are filtered as we proceed to lower levels of abstraction. We
conducted tests on different classes of curves. The potential application on fingerprint
recognition was discussed and showed promising results.

Concentric circles is a new approach. It can be improved to automate the selection of
the radius increment value to enable curves to be represented at the highest possible
abstraction. We are investigating building the representation as a hierarchical structure,
and studying parallel algorithms for matching. In addition, we are looking into
developing scale invariant sets from the concentric circles.
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